• Johannesen Voigt opublikował 5 miesięcy, 2 tygodnie temu

    There is an increasing awareness of high burnout found among physicians. Resident physicians particularly face heightened stress due to inherent pressures of training in addition to systemic challenges common to healthcare. It is crucial that medical training programs and organizations create a culture which promotes physician well-being. We conducted an evaluation of a quality assurance pilot program aimed at creating a safe space for increasing burnout awareness and well-being among resident physicians. The program was voluntary, offered to psychiatry residents enrolled at McMaster University, and comprised an online resilience curriculum, peer groups, and wellness newsletters. Data analysis took place between December 15, 2018 and July 15, 2019. The educational goals were evaluated by outcome measures obtained over time in aggregated response data through residents’ anonymous survey feedback. All aspects of the triad received positive feedback, with peer groups being perceived as most helpful. Of all residents, 31% (n = 22) engaged in all three aspects of the program; the majority were female (83%) and senior residents (63%). While 48% reported burnout upon enrollment, there was an average 50% stress reduction perceived post-attendance. This project has shown that peer groups can make a difference in the daily experience of psychiatry residents at our institution.Degradable heart valves based on in situ tissue regeneration have been proposed as potentially durable and non-thrombogenic prosthetic alternatives. We evaluated the acute in vivo function, microstructure, mechanics, and thromboresistance of a stentless biodegradable tissue-engineered heart valve (TEHV) in the tricuspid position. Biomimetic stentless tricuspid valves were fabricated with poly(carbonate urethane)urea (PCUU) by double-component deposition (DCD) processing to mimic native valve mechanics and geometry. Five swine then underwent 24-h TEHV implantation in the tricuspid position. Echocardiography demonstrated good leaflet motion and no prolapse and trace to mild regurgitation in all but one animal. Histology revealed patches of proteinaceous deposits with no cellular uptake. SEM demonstrated retained scaffold microarchitecture with proteinaceous deposits but no platelet aggregation or thrombosis. Explanted PCUU leaflet thickness and mechanical anisotropy were comparable with native tricuspid leaflets. Bioinspired, elastomeric, stentless TEHVs fabricated by DCD were readily implantable and demonstrated good acute function in the tricuspid position.Cardiac output during exercise increases by as much as fivefold in the untrained man, and by as much as eightfold in the elite athlete. Increasing venous return is a critical but much overlooked component of the physiological response to exercise. Cardiac disorders such as constrictive pericarditis, restrictive cardiomyopathy and pulmonary hypertension are recognised to impair preload and cause exercise limitation; however, the effects of peripheral venous obstruction on cardiac function have not been well described. This manuscript will discuss how obstruction of the iliocaval venous outflow can lead to impairment in exercise tolerance, how such obstructions may be diagnosed, the potential implications of chronic obstructions on sympathetic nervous system activation, and relevance of venous compression syndromes in heart failure with preserved ejection fraction.Microbial community dynamics and PTA wastewater degradation performance of sequentially connected two-stage upflow anaerobic sludge blanket (UASB) bioreactors have been studied for 225 days. The working volume of acidogenic (R1) and methanogenic reactors (R2) have sixfold differences. Thus, the reactors operated under different hydraulic retention time (HRT) conditions, which are preferential for PTA wastewater content. Archeal and bacterial profiles of granules were analyzed with denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (Q-PCR) techniques. According to high-pressure liquid chromatography (HPLC) results, 4-Carboxybenzaldehyde (4-CBA) and acetic acid (AA) completely degraded in the first stage, whereas terephthalate (TA) and p-toluic acid (p-TA) degradation ratios were 90% and 47% in the second stage, respectively. The methane content of the UASB reactor was determined as 76% by gas chromatography (GC) analysis. Microbial community analysis indicated that the members of hydrogenotrophic methanogen groups Methanobacteriales and Methanomicrobiales were dominantly responsible for methane production throughout the process.Methylmercury (MeHg) is a well-known neurotoxin of the central nervous system (CNS). Neuroinflammation is one of the main pathways of MeHg-induced CNS impairment. This study aims to investigate the expressions of IL-6, MIP-2, and MCP-5, as biomarkers in relation with MeHg-induced CNS impairment and N-acetyl-L-cysteine (NAC) treatment in mice, as well as histopathological changes of brain tissue and clinical symptom such as ataxia. Twenty male Balb/c mice, aged 8-9 weeks, were divided into 4 groups and treated with saline (control), NAC [150 mg/kg body weight (BW) day], MeHg (4 mg Hg/kg BW), or a combination of MeHg and NAC for 17 days. MeHg induced the expression of IL-6, MIP-2, and MCP-5 in the serum, with median values (those in controls) of 55.06 (9.44), 15.94 (9.30), and 458.91 (239.91) mg/dl, respectively, and a statistical significance was observed only in IL-6 expression (p  less then  0.05). MIP-2 and MCP-5 expressions tended to increase in the cerebrum of MeHg-treated group compared with controls; however, the difference was not statistically significant. MeHg treatment also increased IL-6 expression in the cerebellum (7.73 and 4.81 mg/dl in MeHg-treated group and controls, respectively), with a marginal significance. NAC significantly suppressed MeHg-induced IL-6 and MIP-2 expressions in the serum (p  less then  0.05 for both), and slightly reduced MCP-5 expression in the cerebrum. Ataxia was observed in all MeHg-treated mice after 9-day exposure as well as the decrease of intact Purkinje cells in brain tissue (p  less then  0.05). These findings suggest that MeHg induced neurotoxicity by elevating the expression of IL-6, MIP-2, and MCP-5 and causing ataxia symptoms, and NAC reduced MeHg-mediated effects on the CNS.Assessment of individual therapeutic responses provides valuable information concerning treatment benefits in individual patients. We evaluated individual therapeutic responses as determined by the Disease Activity Score-28 joints critical difference for improvement (DAS28-dcrit) in rheumatoid arthritis (RA) patients treated with intravenous tocilizumab or comparator anti-tumor necrosis factor (TNF) agents. The previously published DAS28-dcrit value [DAS28 decrease (improvement) ≥ 1.8] was retrospectively applied to data from two studies of tocilizumab in RA, the 52-week ACT-iON observational study and the 24-week ADACTA randomized study. Data were compared within (not between) studies. DAS28 was calculated with erythrocyte sedimentation rate as the inflammatory marker. Stability of DAS28-dcrit responses and European League Against Rheumatism (EULAR) good responses was determined by evaluating repeated responses at subsequent timepoints. A logistic regression model was used to calculate p values for differences in response rates between active agents. Patient-reported outcomes (PROs; pain, global health, function, and fatigue) in DAS28-dcrit responder versus non-responder groups were compared with an ANCOVA model. DAS28-dcrit individual response rates were 78.2% in tocilizumab-treated patients and 58.2% in anti-TNF-treated patients at week 52 in the ACT-ion study (p = 0.0001) and 90.1% versus 59.1% at week 24 in the ADACTA study (p  less then  0.0001). DAS28-dcrit responses showed greater stability over time (up to 52 weeks) than EULAR good responses. For both active treatments, DAS28-dcrit responses were associated with statistically significant improvements in mean PRO values compared with non-responders. The DAS28-dcrit response criterion provides robust assessments of individual responses to RA therapy and may be useful for discriminating between active agents in clinical studies and guiding treat-to-target decisions in daily practice.Page 806, column 1, line 3 The text, which previously read.RNA-seq was used to analyze the transcriptional changes in sugar beet (Beta vulgaris L.) triggered by alkaline solution to elucidate the molecular mechanism underlying alkaline tolerance in sugar beet. Several differentially expressed genes related to stress tolerance were identified. Our results provide a valuable resource for the breeding of new germplasms with high alkaline tolerance. Alkalinity is a highly stressful environmental factor that limits plant growth and production. Sugar beet own the ability to acclimate to various abiotic stresses, especially salt and alkaline stress. Although substantial previous studies on response of sugar beet to saline stress has been conducted, the expressions of alkali-responsive genes in sugar beet have not been comprehensively investigated. In this study, we conducted transcriptome analysis of leaves in sugar beet seedlings treated with alkaline solutions for 0 day (control, C), 3 days (short-term alkaline treatment, ST) and 7 days (long-term alkaline treatment, LT).nes and should benefit the improvement of alkaline stress tolerance in sugar beet.Multiple variables that control the relative levels of successful heritable plant genome editing were addressed using simple case studies in Arabidopsis thaliana. The recent advent of genome editing technologies (especially CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats) has revolutionized various fields of scientific research. The process is much more specific than previous mutagenic processes and allows for targeting of nearly any gene of interest for the creation of loss-of-function mutations and many other types of editing, including gene-replacement and gene activation. However, not all CRISPR construct designs are successful, due to several factors, including differences in the strength and cell- or tissue-type specificity of the regulatory elements used to express the Cas9 (CRISPR Associated protein 9) DNA nuclease and single guide RNA components, and differences in the relative editing efficiency at different target areas within a given gene. Here we compare the levels of editing created in Arabidopsis thaliana by CRISPR constructs containing either different promoters, or altered target sites with varied levels of guanine-cytosine base content. Additionally, nuclease activity at sites targeted by imperfectly matched single guide RNAs was observed, suggesting that while the primary goal of most CRISPR construct designs is to achieve rapid, robust, heritable gene editing, the formation of unintended mutations at other genomic loci must be carefully monitored.PSBR1 is a moso bamboo gene negatively regulated by brassinosteroid, which encodes a mitochondrial localized protein. Overexpression of PSBR1 leads to growth inhibition in various growth progresses in Arabidopsis. The young shoot of moso bamboo (Phyllostachys edulis) is known as one of the fastest growing plant organs. The roles of phytohormones in the fast-growth of bamboo shoot are not fully understood. Brassinosteroids (BRs) are a group of growth-promoting steroid hormones that play important roles in cell elongation and division. While BR related genes are highly enriched in fast-growing internodes in moso bamboo, the functions of BR in the fast-growth process is not understood at the molecular level. Here, we identified a poaceae specific gene, PSBR1 (Poaceae specific and BR responsive gene 1) from the moso bamboo genome. PSBR1 was highly expressed in the stem and leaves of bamboo seedling, and the elongating nodes of fast-growing bamboo shoot. PSBR1’s expression is increased by BR biosynthesis inhibitor propiconazole but decreased by BR treatment.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0