-
Skinner Mercado opublikował 5 miesięcy, 2 tygodnie temu
The biological mechanisms involved in SARS-CoV-2 infection are only partially understood. Thus we explored the plasma metabolome of patients infected with SARS-CoV-2 to search for diagnostic and/or prognostic biomarkers and to improve the knowledge of metabolic disturbance in this infection. We analyzed the plasma metabolome of 55 patients infected with SARS-CoV-2 and 45 controls by LC-HRMS at the time of viral diagnosis (D0). We first evaluated the ability to predict the diagnosis from the metabotype at D0 in an independent population. Next, we assessed the feasibility of predicting the disease evolution at the 7th and 15th day. Plasma metabolome allowed us to generate a discriminant multivariate model to predict the diagnosis of SARS-CoV-2 in an independent population (accuracy > 74%, sensitivity, specificity > 75%). We identified the role of the cytosine and tryptophan-nicotinamide pathways in this discrimination. However, metabolomic exploration modestly explained the disease evolution. Here, we present the first metabolomic study in SARS-CoV-2 patients which showed a high reliable prediction of early diagnosis. We have highlighted the role of the tryptophan-nicotinamide pathway clearly linked to inflammatory signals and microbiota, and the involvement of cytosine, previously described as a coordinator of cell metabolism in SARS-CoV-2. These findings could open new therapeutic perspectives as indirect targets.An amendment to this paper has been published and can be accessed via a link at the top of the paper.The prevalence of a novel β-coronavirus (SARS-CoV-2) was declared as a public health emergency of international concern on 30 January 2020 and a global pandemic on 11 March 2020 by WHO. The spike glycoprotein of SARS-CoV-2 is regarded as a key target for the development of vaccines and therapeutic antibodies. In order to develop anti-viral therapeutics for SARS-CoV-2, it is crucial to find amino acid pairs that strongly attract each other at the interface of the spike glycoprotein and the human angiotensin-converting enzyme 2 (hACE2) complex. In order to find hot spot residues, the strongly attracting amino acid pairs at the protein-protein interaction (PPI) interface, we introduce a reliable inter-residue interaction energy calculation method, FMO-DFTB3/D/PCM/3D-SPIEs. In addition to the SARS-CoV-2 spike glycoprotein/hACE2 complex, the hot spot residues of SARS-CoV-1 spike glycoprotein/hACE2 complex, SARS-CoV-1 spike glycoprotein/antibody complex, and HCoV-NL63 spike glycoprotein/hACE2 complex were obtained using the same FMO method. Following this, a 3D-SPIEs-based interaction map was constructed with hot spot residues for the hACE2/SARS-CoV-1 spike glycoprotein, hACE2/HCoV-NL63 spike glycoprotein, and hACE2/SARS-CoV-2 spike glycoprotein complexes. Finally, the three 3D-SPIEs-based interaction maps were combined and analyzed to find the consensus hot spots among the three complexes. As a result of the analysis, two hot spots were identified between hACE2 and the three spike proteins. In particular, E37, K353, G354, and D355 of the hACE2 receptor strongly interact with the spike proteins of coronaviruses. The 3D-SPIEs-based map would provide valuable information to develop anti-viral therapeutics that inhibit PPIs between the spike protein of SARS-CoV-2 and hACE2.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Triploid Atlantic salmon (Salmo salar L.) is seen as one of the best solutions to solve key issues in the salmon farming industry, such as the impact of escapees on wild stocks and pre-harvest sexual maturation. However, the effects of triploidy on salmon smoltification are poorly understood at the molecular level, even though smoltification is a very sensitive period that has a major influence on survival rate and performance of farmed salmon. In this study, we have compared the liver transcriptomes of diploid and triploid Atlantic salmon at three ontogeny stages fry, parr and smolt. In diploid fish, a total of 2,655 genes were differentially expressed between fry and parr, whereas 506 genes had significantly different transcript levels between parr and smolts. In triploids, 1,507 and 974 genes were differentially expressed between fry and parr, and between parr and smolts, respectively. Most of these genes were down-regulated and 34 genes were differentially expressed between ploidies at the same stage. In r and histological level in the liver of both diploid and triploid Atlantic salmon prior to and during smoltification.Gastrointestinal helminth-microbiota associations are shaped by various ecological processes. The effect of the ecological context of the host on the bacterial microbiome and gastrointestinal helminth parasites has been tested in a number of ecosystems and experimentally. This study takes the important step to look at these two groups at the same time and to start to examine how these communities interact in a changing host environment. Fresh faecal samples (N = 335) from eight wild Eulemur populations were collected over 2 years across Madagascar. We used 16S ribosomal RNA gene sequencing to characterise the bacterial microbiota composition, and faecal flotation to isolate and morphologically identify nematode eggs. Infections with nematodes of the genera Callistoura and Lemuricola occurred in all lemur populations. Seasonality significantly contributed to the observed variation in microbiota composition, especially in the dry deciduous forest. Microbial richness and Lemuricola spp. infection prevalence were highest in a previously intensely logged site, whereas Callistoura spp. showed no such pattern. In addition, we observed significant correlations between gastrointestinal parasites and bacterial microbiota composition in these lemurs, with 0.4-0.7% of the variation in faecal bacterial microbiota composition being explained by helminth infections. With this study, we show effects of environmental conditions on gastrointestinal nematodes and bacterial interactions in wild lemurs and believe it is essential to consider the potential role of microbiome-parasite associations on the hosts’ GI stability, health, and survival.The Casimir force exerted on a gold dipolar nanoparticle by a finite-thickness slab of the natural hyperbolic material namely, the ortorhombic crystalline modification of boron nitride, is investigated. The main contribution to the force originates from the TM-polarized waves, for frequencies at which the parallel and perpendicular components of the dielectric tensor reach minimal values. These frequencies differ from those corresponding to the Lorentzian resonances for the permittivity components. We show that when the slab is made of an isotropic epsilon-near-zero absorbing material the force on the nanoparticle is larger than that induced by a hyperbolic material, for similar values of the characteristic parameters. This fact makes these materials optimal in the use of Casimir’s forces for nanotechnology applications.The proliferation and differentiation of cultured epithelial cells may be modified by Rho-associated kinase (ROCK) inhibition and extracellular Ca2+ concentration. However, it was not known whether a combination would influence the behavior of cultured epithelial cells through changes in the phosphorylation of non-muscle myosin light chain II (MLC). Here we show that the combination of ROCK inhibition with Ca2+ elevation regulated the phosphorylation of MLC and improved both cell expansion and cell-cell adhesion during the culture of human nasal mucosal epithelial cell sheets. During explant culture, Ca2+ enhanced the adhesion of nasal mucosal tissue, while ROCK inhibition downregulated MLC phosphorylation and promoted cell proliferation. During cell sheet culture, an elevation of extracellular Ca2+ promoted MLC phosphorylation and formation of cell-cell junctions, allowing the harvesting of cell sheets without collapse. Moreover, an in vitro grafting assay revealed that ROCK inhibition increased the expansion of cell sheets three-fold (an effect maintained when Ca2+ was also elevated), implying better wound healing potential. We suggest that combining ROCK inhibition with elevation of Ca2+ could facilitate the fabrication of many types of cell graft.We previously showed that mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP) exhibit attenuated light-induced phase shift. To explore the underlying mechanisms, we performed gene expression analysis of laser capture microdissected suprachiasmatic nuclei (SCNs) and found that lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is involved in the impaired response to light stimulation in the late subjective night in PACAP-deficient mice. L-PGDS-deficient mice also showed impaired light-induced phase advance, but normal phase delay and nonvisual light responses. Then, we examined the receptors involved in the response and observed that mice deficient for type 2 PGD2 receptor DP2/CRTH2 (chemoattractant receptor homologous molecule expressed on Th2 cells) show impaired light-induced phase advance. Concordant results were observed using the selective DP2/CRTH2 antagonist CAY10471. These results indicate that L-PGDS is involved in a mechanism of light-induced phase advance via DP2/CRTH2 signaling.Obesity is associated with elevated levels of TNF-α and proinflammatory CD11c monocytes/macrophages. TNF-α mediated dysregulation in the plasticity of monocytes/macrophages is concomitant with pathogenesis of several inflammatory diseases, including metabolic syndrome, but the underlying mechanisms are incompletely understood. Since neutral sphingomyelinase-2 (nSMase2 SMPD3) is a key enzyme for ceramide production involved in inflammation, we investigated whether nSMase2 contributed to the inflammatory changes in the monocytes/macrophages induced by TNF-α. In this study, we demonstrate that the disruption of nSMase activity in monocytes/macrophages either by chemical inhibitor GW4869 or small interfering RNA (siRNA) against SMPD3 results in defects in the TNF-α mediated expression of CD11c. Furthermore, blockage of nSMase in monocytes/macrophages inhibited the secretion of inflammatory mediators IL-1β and MCP-1. In contrast, inhibition of acid SMase (aSMase) activity did not attenuate CD11c expression or secretion of IL-1β and MCP-1. TNF-α-induced phosphorylation of JNK, p38 and NF-κB was also attenuated by the inhibition of nSMase2. Moreover, NF-kB/AP-1 activity was blocked by the inhibition of nSMase2. SMPD3 was elevated in PBMCs from obese individuals and positively corelated with TNF-α gene expression. These findings indicate that nSMase2 acts, at least in part, as a master switch in the TNF-α mediated inflammatory responses in monocytes/macrophages.Since optimal treatment at an early stage leads to remission of symptoms and recovery of function, putative biomarkers leading to early diagnosis and prediction of therapeutic responses are desired. The current study aimed to use a metabolomic approach to extract metabolites involved in both the diagnosis of major depressive disorder (MDD) and the prediction of therapeutic response for escitalopram. We compared plasma metabolites of MDD patients (n = 88) with those in healthy participants (n = 88) and found significant differences in the concentrations of 20 metabolites. We measured the Hamilton Rating Scale for Depression (HRSD) on 62 patients who completed approximately six-week treatment with escitalopram before and after treatment and found that kynurenic acid and kynurenine were significantly and negatively associated with HRSD reduction. Only one metabolite, kynurenic acid, was detected among 73 metabolites for overlapped biomarkers. Kynurenic acid was lower in MDD, and lower levels showed a better therapeutic response to escitalopram.