-
McDowell Fernandez opublikował 5 miesięcy, 2 tygodnie temu
Our primary findings show that rats with lesions to p-dmCPu had a blunted goal-tracking response to a non-contingent nicotine administration after 20 consecutive days of nicotine-sucrose pairing. Our findings extend previous reports to a contingent model of nicotine self-administration and show that p-dmCPu is involved in associative learning with nicotine stimulus using a paradigm where rats voluntarily self-administer nicotine infusions that are paired with access to sucrose-a paradigm that closely resembles learning processes observed in humans.The construct of intuitive eating is most often measured using the 23-item Intuitive Eating Scale-2 (IES-2), but previous studies have typically relied solely on confirmatory factor analysis (CFA) to understand IES-2 dimensionality. In contrast, a bifactor exploratory structural equation modelling (B-ESEM) framework offers a more realistic account of IES-2 multidimensionality. Here, we assessed the psychometric properties of a novel Italian translation using a combination of exploratory factor analysis and B-ESEM. A total of 950 adults completed the IES-2 alongside measures of positive body image, disordered eating, and psychological well-being. Results indicated that a 4-factor B-ESEM model had adequate fit to the data and that fit was improved when the correlated uniqueness of seven negatively worded IES-2 items was accounted for. This model of IES-2 scores showed adequate internal consistency and good test-retest reliability up to three weeks. Evidence of construct validity was good in terms of a global IES-2 factor, and broadly supported in terms of its specific-factors. These results highlight the utility of a B-ESEM framework for understanding the dimensionality of IES-2 scores and may help scholars better understand the extent to which the IES-2 adequately operationalises the construct of intuitive eating.Microcirculatory changes and oxidative stress have long been associated with acute kidney injury. Despite substantial progress made by two-photon microscopy of microvascular responses to acute kidney injury in rodent models, little is known about the underlying changes in blood oxygen delivery and tissue oxygen metabolism. To fill this gap, we developed a label-free kidney imaging technique based on photoacoustic microscopy, which enables simultaneous quantification of hemoglobin concentration, oxygen saturation of hemoglobin, and blood flow in peritubular capillaries in vivo. Based on these microvascular parameters, microregional oxygen metabolism was quantified. We demonstrated the utility of this technique by studying kidney hemodynamic and oxygen-metabolic responses to acute kidney injury in mice subject to lipopolysaccharide-induced sepsis. Dynamic photoacoustic microscopy of the peritubular capillary function and tissue oxygen metabolism revealed that sepsis induced an acute and significant reduction in peritubular capillary oxygen saturation of hemoglobin, concomitant with a marked reduction in kidney ATP levels and contrasted with nominal changes in peritubular capillary flow and plasma creatinine. Thus, our technique opens new opportunities to study microvascular and metabolic dysfunction in acute and chronic kidney diseases.Vascular endothelial growth factor (VEGF) has essential functions in angiogenesis, endothelial cell proliferation, migration, and tumor invasion. Different approaches have been developed to suppress tumor angiogenesis, which is considered a hallmark of cancer. Anti-VEGF monoclonal antibodies constitute an important strategy for cancer immunotherapy, which has been produced on several platforms. In this study, a novel single-chain anti-VEGF monoclonal antibody (scVEGFmAb) was produced in the goat mammary gland by adenoviral transduction. scVEGFmAb was purified by affinity chromatography. N-glycans were analyzed by exoglycosidase digestion and hydrophilic interaction ultra-performance liquid chromatography coupled to electrospray ionization mass spectrometry. The biological activity of scVEGFmAb was assessed by scratch and mouse aortic ring assays. scVEGFmAb was produced at 0.61 g/L in the goat milk, and its purification rendered 95 % purity. N-glycans attached to scVEGFmAb backbone were mainly neutral biantennary core fucosylated with Galβ1,4GlcNAc motif, and charged structures were capped with Neu5Ac and Neu5Gc. The chimeric molecule significantly prevented cell migration and suppressed microvessel sprouting. These results demonstrated for the first time the feasibility of producing an anti-VEGF therapeutic antibody in the milk of non-transgenic goats with the potential to counteract tumor angiogenesis.Gelatin-based inks have a broad range of applications in bioprinting for tissue engineering and regenerative medicine due to their biocompatibility, ease of modification, degradability, and rapid gelation induced by low temperature. However, gelatin-derived inks prepared through low-temperature treatment have poor mechanical properties that limit their applications. To solve this problem, we designed polyacrylamide/gelatin/silver nanoparticle (PAAm-GelatinAgNPs) ink to improve gelatin-based hydrogels. The ink is based on double networks, in which the physically cross-linked gelatin as the first network and covalently cross-linked PAAm as the second network. It was found that the presence of PAAm increased the tensile and compression strength of the gelatin-based ink. Moreover, silver nanoparticles endowed the antibacterial properties to the gelatin-based ink and were able to shield the UV irradiation and damages to rat skin. In addition, this ink showed the shear thinning property; Consequently it succeeded in printing complex 3D scaffolds such as the cube, five-pointed star, flower, and university logo of „SEU”. In summary, this ink presents a new strategy for the modification of gelatin and offers new potential applications for customized therapy of antimicrobial and anti-UV damage to tissues.Highland barley (HB) is mainly composed of starch, which may account for up to 65% of the dry weight to the kernel. HB possesses unique physical and chemical properties and has good industrial application potential. It has also been identified as a minor grain crop with excellent nutritional and health functions. Highland barley starch (HBS) features a number of structural and functional properties that render it a useful material for numerous food and non-food applications. This review summarizes the current status of research on the extraction processes, chemical composition, molecular fine structures, granular morphology, physicochemical properties, digestibility, chemical and physical modifications, and potential uses of HBS. The findings provide a comprehensive reference for further research on HBS and its applications in various food and non-food industries.Adding hydrocolloids into native starch is a secure and effective method of physical modification. In this study, the effect of sodium alginate (AG) on the gelatinization, rheological, and retrogradation properties of rice starch (RS) was investigated by measuring the pasting parameters, melting enthalpy (ΔH), rheological characteristic parameters, intensity ratio of 1047 cm-1 to 1022 cm-1 (R1047/1022), and relative crystallinity (RC) of RS-AG blends. Rapid visco analysis shows that AG could significantly change the gelatinization parameters of RS. Differential scanning calorimetry results show that the ΔH values of RS initially decreased in the low AG concentration range (0.10%-0.30%), but increased in the high AG concentration range (0.30%-0.50%). Dynamic rheological analysis reveals that the modulus (G’, G”) and the loss tangent (tan δ) increased with the rise of the AG concentration from 0.10% to 0.50%. Fourier transform infrared spectroscopy and X-ray diffraction patterns collectively prove that the crystallinity of RS decreased with the addition of AG during the retrogradation periods. The interactions between AG and starch molecules in RS-AG blends were hypothesized to correlate with the aforementioned results.Nowadays, the targeted imaging probe and drug delivery systems are the novel breakthrough area in the nanomedicine and treatment of various diseases. Conjugation of monoclonal antibodies and their fragments on nanoparticles (NPs) have a remarkable impact on personalized medicine, such that it provides specific internalization and accumulation in the tumor microenvironment. Targeted imaging and early detection of cancer is presumably the strong participant to a diminution in mortality and recurrence of cancer disease that will be the next generation of the imaging device in clinical application. These intelligent delivery systems can deliver therapeutic agents that target cancerous tissue with minimal side effects and a wide therapeutic window. Overall, the linkage between the antibody and NPs is a critical subject and requires precise design and development. The attachment of antibody nanoconjugates (Ab-NCs) on the antigen surface shouldn’t affect the function of the antibody-antigen binding. Also, the stability of the antibody nanoconjugates in blood circulation is concerned to avoid the release of drug in non-targeted regions and the possible for specific toxicity while disposal to the desired site. Here, we update the recent progress of Ab-NCs to improve early detection and cancer therapy.High-throughput serological tests that can detect neutralizing antibodies against SARS-CoV-2 are desirable for serosurveillance and vaccine efficacy evaluation. Although the conventional neutralization test (cVNT) remains the gold standard to confirm the presence of neutralizing antibodies in sera, the test is too labour-intensive for massive screening programs and less reproducible as live virus and cell culture is involved. Here, we performed an independent evaluation of a commercially available surrogate virus neutralization test (sVNT, GenScript cPass™) that can be done without biosafety level 3 containment in less than 2 hours. When using the cVNT and a Luminex multiplex immunoassay (MIA) as reference, the sVNT obtained a sensitivity of 94% (CI 90-96%) on a panel of 317 immune sera that were obtained from hospitalized and mild COVID-19 cases from Belgium and a sensitivity of 89% (CI 81-93%) on a panel of 184 healthcare workers from the Democratic Republic of Congo. We also found strong antibody titer correlations (rs>0.8) among the different techniques used. In conclusion, our evaluation suggests that the sVNT could be a powerful tool to monitor/detect neutralising antibodies in cohort and population studies. The technique could be especially useful for vaccine evaluation studies in sub-Saharan Africa where the basic infrastructure to perform cVNTs is lacking.The delays in the production and delivery of COVID-19 vaccines and the growing number of fatal infections across the globe raised the question whether it would be more advantageous to vaccinate a larger group of individuals with one dose instead of a smaller one with two doses. Through a group of vaccinated healthcare workers, we describe the qualitative and quantitative serological response to a single dose of the BNT162b2 vaccine. We found that, before the second dose inoculation, 95.3 % (182/191) already had anti-SARS-CoV-2 IgG and, half of them, antibodies concentrations against RBD (the key target of neutralizing antibodies) that reached maximum values for the used evaluation immunoassay. In order to improve the execution of vaccination programs, further studies are needed to assess whether there are individuals for whom a single dose of mRNA vaccine or a delay in the inoculation of the second dose, produce a sufficient immune response. Additionally, follow-up studies will help in understanding post-vaccination immunity, how long it lasts and how it relates to infection and reinfection.