• Bryan Voigt opublikował 5 miesięcy, 2 tygodnie temu

    45 ± 4.88 against A-549, Hela, SGC-7901, and L-02 cells, respectively, stronger than the positive control 5-FU and MTX. Furthermore, compound 12 had the most potent inhibitory activity. The MIC of this compound against Escherichia coli (ATCC 29213) and Staphylococcus aureus (ATCC 8739) was 3.125 nmol·mL-1, which was smaller than that of the reference agents, amoxicillin and ciprofloxacin. Deoxyuridine triphosphate derivatives (dUTPs) modified at the C5 position of the pyrimidine ring with various aromatic hydrocarbon substituents of different hydrophilicities have been synthesized. The aromatic hydrocarbon substituents were attached to dUTPs via a CHCHCH2NHCOCH2 linker. The efficiency of the PCR incorporation of modified dUMPs using Taq, Tth, Vent (exo-) and Deep Vent (exo-) polymerases and a model DNA template containing one, two and three adjacent adenine nucleotides at three different sites within the sequence was investigated. For all the polymerases used, the yield of the modified PCR product was significantly increased with increasing hydrophilicity of the aromatic hydrocarbon substituent. In particular, for the above polymerases, the efficiency of the incorporation of dUMPs modified with the most hydrophilic of the studied aromatic hydrocarbon substituents, a 4-hydroxyphenyl residue, was 60-85% of the efficiency of dTMP incorporation. At the same time, the relative efficiencies of the incorporation of dUMPs modified with 2-, 4-methoxyphenyl, phenyl and 4-nitrophenyl substituents ranged from 20 to 50% and were 2-18% for the 1-naphthalene and 4-biphenyl groups, which were the most hydrophobic of the studied aromatic hydrocarbon substituents. OBJECTIVE In this systematic review, we will discuss the evidence on the occurrence of central nervous system (CNS) involvement and neurological manifestations in patients with COVID-19. METHODS MEDLINE (accessed from PubMed) and Scopus from December 01, 2019 to March 26, 2020 were systematically searched for related published articles. In both electronic databases, the following search strategy was implemented and these key words (in the title/abstract) were used „COVID 19” OR „coronavirus” AND „brain” OR „CNS” OR „neurologic”. RESULTS Through the search strategy, we could identify two articles about neurological involvement by COVID-19. One of these publications was a narrative review and the other one was a viewpoint. However, the authors scanned the reference lists of the included studies and could identify multiple references. One study, specifically investigated the neurological manifestations of COVID-19 and could document CNS manifestations in 25% of the patients. Most of the studies investigated the manifestations of COVID-19 in general. CONCLUSION While neurological manifestations of COVID-19 have not been studied appropriately, it is highly likely that some of these patients, particularly those who suffer from a severe illness, have CNS involvement and neurological manifestations. Precise and targeted documentation of neurological symptoms, detailed clinical, neurological, and electrophysiological investigations of the patients, attempts to isolate SARS-CoV-2 from cerebrospinal fluid, and autopsies of the COVID-19 victims may clarify the role played by this virus in causing neurological manifestations. Hollow mesoporous particles for drug delivery and cancer therapy have attracted significant attention over recent decades. Here, we develop a simple and highly efficient strategy for preparing fluorescent hollow mesoporous carbon spheres (HMCSs). Compared with typical carbon materials such as fullerene C60, carbon nanotubes, reduced graphene oxide, and carbon nanohorns; HMCSs showed fewer effects on cell cycle distribution and lower toxicity to cells. Ten different drugs were incorporated into the HMCSs, and the maximum loading efficiency reached 42.79 ± 2.7%. Importantly, microwaves were found to improve the photothermal effect generated by HMCSs when combined with 980-nm laser irradiation. The cell killing and tumor growth inhibition efficiencies of HMCSs and drug-loaded HMCSs under co-irradiation with laser and microwaves were significantly improved compared with those under laser irradiation alone. After local administration HMCSs were only distributed in tissue at the injection site. HMCSs showed almost no toxicity in mice after local injection and could be completely removed from the injection site. Aspirin-exacerbated respiratory disease (AERD) classically presents with severe asthma, nasal polyposis, and respiratory exacerbations in response to cyclooxygenase (COX)-1 inhibition. Recent advances in our understanding of AERD have revealed multiple facets of immune dysregulation, including diminished prostaglandin E2 (PGE2) function and elevated levels of both cysteinyl leukotrienes (CysLTs) and innate cytokines such as interleukin 33 (IL-33). Inflammatory mediators in AERD heighten the recruitment and activation of innate lymphoid cells type 2 (ILC2), mast cells, eosinophils, and platelet-adherent leukocytes. This contributes to a cyclical pattern of type 2 inflammation. Here, we highlight current understanding of the immunopathogenesis of AERD. The prevalence and disease burden of atopic dermatitis (AD) is substantial. AD causes significant impairment in quality of life. It is also associated with mental disorders as well as cardiovascular diseases. Many factors including race, environment, skin barrier dysfunction, immune regulatory abnormalities, and microbiome have been reported to affect the pathophysiology of AD. A variety of cell types including Th2, Th17, Th22, and type 2 innate lymphoid cells contribute to AD. Cytokines from these immune cells cause abnormal epidermal differentiation and skin barrier dysfunction. Moreover, microbial dysbiosis and deficiency of antimicrobial peptides result in Staphylococcus aureus infection. Recently, new drugs have been successfully launched to target polarized immune pathways that lead to moderate-to-severe AD. BACKGROUND Boron (B) is an abundant element on earth and presents at physiological pH in the form of boric acid (BA). It has both positive and negative effects on biological systems. BA and sodium borates have been considered as being toxic to the reproduction system in animal experiments. Unfortunately, the molecular mechanism underlying the toxic effects of BA is not fully understood. METHODS Here, we demonstrate the influence of BA on mouse TM3 Leydig cells which are male reproductive system cells targeted by BA exposure. The cytotoxicity was evaluated by MTT and NRU assays. Annexin V-FITC/PI double staining kit, mitochondria membrane potential (ΔΨm) assay kit with JC-1 and caspase-3 colorimetric assay kit were used to indicate the cell death pathway. To estimate the role of oxidative stress in BA induced toxicity, glutathione (GSH) level, catalase (CAT) and superoxide dismutase (SOD) activities were measured manually. RESULTS The cell viability assays showed that BA was not cytotoxic within the tested concentrations up to 1000 μM. Sub-toxic concentrations were used for detecting oxidative stress status. BA exposure was significantly reduced GSH level at 1000 μM and CAT activity in a concentration-dependent manner. However, SOD activity was increased at the tested concentrations (100-1000 μM). Moreover, ΔΨm was significantly decreased at 500 and 1000 μM of BA, while caspase-3 activity was not changed apparently. CONCLUSION These findings demonstrated that BA is not cytotoxic and apoptotic but may slightly induces oxidative stress in TM3 Leydig cells at higher concentrations. BACKGROUND Heavy metals that pass through the plasmalemma are expected to influence on lichen metabolic processes; however, lichens may tolerate high concentrations of metals by sequestrating them extracellularly. Heavy metal accumulation level fundamentally determine the success of lichens in the colonisation of polluted sites; however, the proportions between extra- and intracellular metal concentrations in lichen thalli are still poorly recognized. In this study metal accumulation patterns of selected toxic trace elements, i.e. Pb, Cd, and micronutrients, i.e. Zn, Cu and Ni, in Cladonia cariosa thalli were recognised in relation to extra- and intracellular fractions. METHODS The intracellular and total concentrations of Zn, Pb, Cd, Cu and Ni in lichen thalli collected from eleven variously polluted sites were determined by means of atomic absorption spectrometry. Additionally, organic carbon and total nitrogen contents as well as pH of soil substrate were measured. RESULTS The accumulation patterns differear accumulation when a given element is in excess. Such capability may facilitate the colonization of extremely polluted sites by certain pioneer lichens. BACKGROUND Standard treatment for diffuse peritonitis due to colorectal perforation may be insufficient to suppress inflammatory reaction in sepsis. Thus, developing new treatments is important. This study aimed to examine whether intraperitoneal irradiation by artificial sunlight suppresses inflammatory reaction in a lipopolysaccharide (LPS)-induced peritonitis model after surgical treatments. MATERIALS AND METHODS Mice were divided into naive, nontreatment (NT), and phototherapy (PT) groups. In the latter two groups, LPS was intraperitoneally administered to induce peritonitis and removed by intraperitoneal lavage after laparotomy. The PT group was irradiated with artificial sunlight intraperitoneally. We evaluated the local and systemic inflammatory reactions. Murine macrophages were irradiated with artificial sunlight after stimulation by LPS, and cell viability and expression of tumor necrotizing factor-α (TNF-α) were evaluated. RESULTS As a local inflammatory reaction, the whole cell count, the expression of interleukin-6 and TNF-α in the intra-abdominal fluid, and the peritoneal thickness were significantly lower in the PT group than in the NT group. As a systematic inflammatory reaction, the expression of serum TNF-α, granulocyte macrophage colony-stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein (MIP)-1α, and MIP-1β were significantly lower in the PT group than in the NT group. Irradiation by artificial sunlight suppressed the expression of TNF-α in murine macrophages without affecting cell viability. CONCLUSIONS Intraperitoneal irradiation by artificial sunlight could suppress local and systemic inflammatory reactions in the LPS-induced peritonitis murine model. These effects may be associated with macrophage immune responses. OBJECTIVE Magnetospinography (MSG) has been developed for clinical application and is expected to be a novel neurophysiological examination. Here, we used an MSG system with sensors positioned in three orthogonal directions to record lumbar canal evoked magnetic fields (LCEFs) in response to peripheral nerve stimulation and to evaluate methods for localizing spinal cord lesions. METHODS LCEFs from the lumbar area of seven rabbits were recorded by the MSG system in response to electrical stimulation of a sciatic nerve. LCEFs and lumbar canal evoked potentials (LCEPs) were measured before and after spinal cord compression induced by a balloon catheter. The lesion positions were estimated using LCEPs and computationally reconstructed currents corresponding to the depolarization site. RESULTS LCEFs were recorded in all rabbits and neural activity in the lumbar spinal cord could be visualized in the form of a magnetic contour map and reconstructed current map. The position of the spinal cord lesion could be estimated by the LCEPs and reconstructed currents at the depolarization site.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0