-
Price McGee opublikował 5 miesięcy, 2 tygodnie temu
Humans spend most of their time in indoor environments, thus a thorough understanding of indoor and outdoor PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) origins for accurate assessment of health risks is required. In the present study, 84 pairs of PM2.5 samples from indoor (laboratory) and outdoor (campus) locations were collected from April to December 2018 in Caofeidian, China. The annual median concentration of PM2.5 outdoors was 90.80 µg/m3, 9.08 times higher than the annual standard of WHO guideline (10 µg/m3). Indoor PM2.5 annual median concentration (41.80 µg/m3) was also higher than the annual standard of ASHRAE guideline (15 µg/m3). The annual median concentrations of ∑18PAHs indoors (44.23 ng/m3) and outdoors (189.6 ng/m3) were highest in winter and descended in the order of autumn > spring > summer. Contrary to summer and autumn, indoor/outdoor concentration ratios were less than 1 in spring and winter, indicating that the contribution of outdoor particle infiltration was more significant than that of indoor sources. The positive matrix factorization model suggested that indoor PAHs came from three sources vehicle emissions (43%), biomass burning (37%), industry emissions, and coal combustion (20%). Outdoor PAHs came from four sources petroleum volatilization (39%), vehicle emissions (30%), coal combustion (18%), and biomass burning (13%). The incremental lifetime cancer risk values of indoor and outdoor PAHs in winter exceeded the acceptable level (10-6), and the carcinogenic risk of adults was higher than that of children and teenagers. These results indicated that simultaneous monitoring of indoor and outdoor PAHs is recommended for accurate assessment of health risk, and the analysis in the current work should be helpful to formulate policies to reduce PAHs emissions.A greenhouse experiment was performed to elucidate the potency of Prosopis juliflora charcoal (PJC) and banana waste compost (BWC) to improve soil fertility and enhance plant growth rate. Plantlets of Ricinus communis were grown in 0, 400, and 800 mg kg-1 Pb-spiked soil ameliorated with P. juliflora charcoal and banana waste compost at 0, 5%, and 10% (w/w) for 60 days. PJC and BWC significantly (p less then 0.05) increased plant growth parameters, that is, number of leaves, node number, plant height, and leaf diameter and reduced oxidative stress manifested by the lesser production of proline, hydrogen peroxide (H2O2), and malondialdehyde (MDA) with respect to control plants. Soil usage of PJC at 10% decreased the Pb accumulation by 61%, whereas BWC decreased Pb concentration in roots by 56% concerning control. Field emission scanning electron microscope (FE-SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) showed high macro and microspores on the surface of charcoal while banana compost showed significant raise in the nutrient content (N, P, K, Zn, Ca, Fe, and Mg). Thermogravimetric (TG) and Fourier-transform infrared spectroscopy (FTIR) analysis of banana compost showed enhanced molar convolution of carbohydrate composites and nitrogen content. These findings pave a clear understanding that PJC and BWC are recalcitrant for Pb phytotoxicity and can also be used as nutrient-rich composites for increased crop production.
Delayed intubation is associated with high mortality. There is a lack of objective criteria to decide the time of intubation. We assessed a recently described combined oxygenation index (ROX index) to predict intubation in immunocompromised patients. The study is a secondary analysis of randomized trials in immunocompromised patients, including all patients who received high-flow nasal cannula (HFNC). The first objective was to evaluate the accuracy of the ROX index to predict intubation for patients with acute respiratory failure.
In the study, 302 patients received HFNC. Acute respiratory failure was mostly related to pneumonia (n = 150, 49.7%). Within 2 (1-3) days, 115 (38.1%) patients were intubated. The ICU mortality rate was 27.4% (n = 83). At 6h, the ROX index was lower for patients who needed intubation compared with those who did not [4.79 (3.69-7.01) vs. 6.10 (4.48-8.68), p < 0.001]. The accuracy of the ROX index to predict intubation was poor [AUC = 0.623 (0.557-0.689)], with low performance using the threshold previously found (4.88). In multivariate analysis, a higher ROX index was still independently associated with a lower intubation rate (OR = 0.89 [0.82-0.96], p = 0.04).
A ROX index greater than 4.88 appears to have a poor ability to predict intubation in immunocompromised patients with acute respiratory failure, although it remains highly associated with the risk of intubation and may be useful to stratify such risk in future studies.
A ROX index greater than 4.88 appears to have a poor ability to predict intubation in immunocompromised patients with acute respiratory failure, although it remains highly associated with the risk of intubation and may be useful to stratify such risk in future studies.Using density functional theory, the effects of P, Al, and Ga atoms doping on electronic structure of boraphene (B36) were investigated. The results show the highest change in electronic structure of doped-B36 systems belongs to Al-B36 structures wherein the gap energy of the system is decreased by 17.92%. DOS diagrams and absorption spectra of doped B36 are compared to pristine and discussed. The capability of pristine and modified B36 in the field of detection/adsorption of HF molecule has been evaluated. The calculated values of adsorption energies of 0.13, 0.63, 0.24, and 0.16 eV for adsorption of HF on pristine, Al-, Ga-, and P-B36 and related DOS diagrams reveal that these systems are not superior host materials for detection/adsorption applications. It was found that the external electric field could increase the interaction between HF and B36 systems leading to suggesting Al-B36 as proper candidate for HF removal applications.Fasciola hepatica (liver fluke), a significant threat to food security, causes global economic loss for the livestock industry and is re-emerging as a foodborne disease of humans. In the absence of vaccines, treatment control is by anthelmintics; with only triclabendazole (TCBZ) currently effective against all stages of F. hepatica in livestock and humans. There is widespread resistance to TCBZ and its detoxification by flukes might contribute to the mechanism. However, there is limited phase I capacity in adult parasitic helminths with the phase II detoxification system dominated by the soluble glutathione transferase (GST) superfamily. Previous proteomic studies have demonstrated that the levels of Mu class GST from pooled F. hepatica parasites respond under TCBZ-sulphoxide (TCBZ-SO) challenge during in vitro culture ex-host. We have extended this finding by exploiting a sub-proteomic lead strategy to measure the change in the total soluble GST profile (GST-ome) of individual TCBZ-susceptible F. hepatica on TCBZ-SO-exposure in vitro culture. TCBZ-SO exposure demonstrated differential abundance of FhGST-Mu29 and FhGST-Mu26 following affinity purification using both GSH and S-hexyl GSH affinity. Furthermore, a low or weak affinity matrix interacting Mu class GST (FhGST-Mu5) has been identified and recombinantly expressed and represents a new low-affinity Mu class GST. Low-affinity GST isoforms within the GST-ome was not restricted to FhGST-Mu5 with a second likely low-affinity sigma class GST (FhGST-S2) uncovered. This study represents the most complete Fasciola GST-ome generated to date and has supported the potential of subproteomic analyses on individual adult flukes.Capillariidae is a group of nematode parasites of vertebrates with a complex taxonomy. The structure of the eggshell, which was indicated as the most important characteristic for identification of genus or species through eggs, is very diverse among genera. The visualization and characterization of eggshell by light microscopy (LM) are a challenging task since different planes of the egg surface are needed. Nevertheless, categories of eggshell ornamentation were proposed by LM smooth, punctuated, reticulated type I, and reticulated type II. The present study aimed to characterize the eggshell structure of Capillariidae species, parasites of mammals and avians, deposited in a helminthological collection using scanning electron microscopy (SEM). Institutional Biological Collections are taxonomic repositories of specimens described and strictly identified at the species level by systematics specialists. SEM eggshell images were obtained from 12 species belonging to 5 genera (Aonchotheca, Baruscapillaria, Capillaria, Echinocoleus, Eucoleus) and compared to their respective LM images. Eggshell patterns observed using SEM were associated categories of eggshell ornamentation previously proposed by LM images. The SEM data indicate that eggshell categories are not in agreement with capillariid genera or sites of infection. However, the study provides previously unknown SEM eggshell information from curated species, which contributes with a specific and supplementary taxonomic feature at the species level of Capillariidae.Chicken coccidiosis, caused by an obligate intracellular protozoan parasite of the genus Eimeria, is a major parasitic disease in the intensively reared poultry industry. Due to the widespread use of anticoccidial drugs, resistance has become an inevitable problem. In our previous study, Eimeria tenella citrate synthase (EtCS) was found to be up-expressed in two drug-resistant strains (diclazuril-resistant and maduramycin-resistant strains) compared to drug-sensitive strain by RNA sequence. In this study, we cloned and expressed EtCS and obtain its polyclonal antibodies. Quantitative real-time polymerase chain (qPCR) reactions and Western blots were used to analyze the transcription and translation levels of EtCS in sensitive and three drug-resistant strains. Compared with the sensitive strain, the transcription of EtCS was both significantly upregulated in diclazuril-resistant and maduramycin-resistant strains, but was not significantly different in salinomycin-resistant strain. No significant difference was seen in translation level in the three drug-resistant strains. Indirect immunofluorescence indicated that EtCS was mainly located in the cytoplasm of sporozoites except for posterior refractile bodies and in the cytoplasm and surface of merozoites. Anti-rEtCS antibody has inhibitory effects on E. tenella sporozoite invasion of DF-1 cells and the inhibition rate is more than 83%. Binding of the protein to chicken macrophage (HD11) cells was confirmed by immunofluorescence assays. When macrophages were treated with rEtCS, secretion of nitric oxide and cell proliferation of the macrophages were substantially reduced. These results showed that EtCS may be related to host cell invasion of E. tenella and involve in the development of E.tenella resistance to some drugs.Macrocyclic lactones are frequently used dewormers in livestock farms around the world. Due to their wide spectrum of action against nematodes and arthropods and their practicality of application at very low doses, their use has become massive since their discovery. These compounds are eliminated in a large percentage in the feces of animals, causing adverse effects on coprophilic fauna. Several research groups around the world have been devoted to evaluating these effects on this fauna. The aim of this review is to register the adverse effects of the concentrations in which macrocyclic lactones are eliminated in the feces of domestic animals and the importance of the coprophilic and edaphilous fauna on the degradation of the feces of the animals. The documented data shows that the use of macrocyclic lactones has a high toxicological risk for the different species that colonize the dung, thus causing an adverse effect on its disintegration and its subsequent incorporation into the soil. Even so, more studies at the regional level and their standardization are necessary to make the comparison between different areas possible.