• Macdonald Randall opublikował 1 rok, 3 miesiące temu

    The monodispersed nanometals are confirmed to be highly active (e.g., considerable catalytic performance), and which could be easily recycled from the bulk gel system via a heating treatment. Thus, this work would provide a generic methodology for the multifunctional metallogel assembly and great possibility for controllable and largescale synthesis of noble nanometals toward biomedical applications.Thymopentin (TP5) is widely used in the treatment of autoimmune diseases, but the short in vivo half-life of TP5 strongly restricts its clinical applications. A series of blank and TP5 loaded hydrogels were synthesized via reversible dual imine bonding by mixing water soluble O-carboxymethyl chitosan (CMCS) with a dynamer (Dy) prepared from Jeffamine and benzene-1,3,5-tricarbaldehyde. TP5 release from hydrogels was studied at 37 °C under in vitro conditions. The molar mass of CMCS, drug loading conditions and drug content were varied to elucidate their effects on hydrogel properties and drug release behaviors. Density functional theory was applied to theoretically confirm the chemical connections between TP5 or CMCS with Dy. All hydrogels exhibited interpenetrating porous architecture with average pore size from 59 to 83 μm, and pH-sensitive swelling up to 10,000% at pH 8. TP5 encapsulation affected the rheological properties of hydrogels as TP5 was partially attached to the network via imine bonding. Higher TP5 loading led to higher release rates. Faster release was observed at pH 5.5 than at pH 7.4 due to lower stability of imine bonds in acidic media. Fitting of release data using Higuchi model showed that initial TP5 release was essentially diffusion controlled. All these findings proved that the dynamic hydrogels are promising carriers for controlled delivery of hydrophilic drugs, and shed new light on the design of drug release systems by both physical mixing and reversible covalent bonding.The design of bioactive plasters is of major interest for the amelioration of dental and bone cements. In this article, a one pot and environmentally friendly strategy based on the addition of a cheap polyphenol-tannic acid (TA) or the main phenolic constituent of TA, namely pyrogallol (PY)- able to interact with calcium sulfate is proposed. Tannic acid and pyrogallol not only modify the morphology of the obtained plaster+TA/PY composites but a part of it is released and provides strong-up to twenty fold- antibacterial effect against Staphylococcus aureus. It is shown that the higher antibacterial efficiency of PY is related to a greater release compared to TA even if in solution the antibacterial effect of PY is lower than that of TA when reported on the basis of the molar concentration in PY units.Swelling is ubiquitous for traditional as-prepared hydrogels, but is unfavorable in many situations, especially biomedical applications, such as tissue engineering, internal wound closure, soft actuating and bioelectronics, and so forth. As the swelling of a hydrogel usually leads to a volume expansion, which not only deteriorates the mechanical property of the hydrogel but can bring about undesirable oppression on the surrounding tissues when applied in vivo. In contrast, anti-swelling hydrogels hardly alter their volume when applied in aqueous environment, therefore reserving the original mechanical performance and size-stability and facilitating their potential application. In the past decade, with the development of advanced hydrogels, quite a number of anti-swelling hydrogels with versatile functions have been developed by researchers to meet the practical applications well, through integrating anti-swelling property with certain performance or functionality, such as high strength, self-healing, injectability, adhesiveness, antiseptics, etc. However, there has not been a general summary with regard to these hydrogels. To promote the construction of anti-swelling hydrogels with desirable functionalities in the future, this review generalizes and analyzes the tactics employed so far in the design and manufacture of anti-swelling hydrogels, starting from the viewpoint of classical swelling theories. The review will provide a relatively comprehensive understanding of anti-swelling hydrogels and clues to researchers interested in this kind of materials to develop more advanced ones suitable for practical application.Allogenic demineralized bone matrix has been developed as a reliable alternative to the autologous bone graft. In the present study, we assessed the osteoformation potential of a partially demineralized bone matrix (PDBM) in a paste form obtained without an added carrier. This formulation included the preparation of cancelous bone from femoral heads after decellularision, delipidation, demineralization in HCl and autoclaving at 121 °C. Structural and biochemical characteristics of PDBM were determined using FTIR (Fourier transform infrared spectroscopy), hydroxyproline, DNA content assays, and optical ellipsometry. The osteoformation potential was evaluated in 8-, 6-, and 4-mm-diameter rat-calvarial bone defects by in vivo micro-CT analysis, performed immediately after surgery on days 0, 15, 30, 45, and 60. Moreover, histological and histomorphometric analyses were done on day 60. PDBM was compared to cancelous bone powder (BP) before its partial demineralization. The expression levels of selected inflammation-, angiogenesis-, and bone-related genes were also investigated by RT-PCR, 3, 7, and 14 days after surgery. Compared to the control group, the PDBM group exhibited a significant increase (p less then 0.05) in radiopacity in 8-mm- and 6-mm-diameter defects at all time points tested. On day 60, the amount of newly-formed bone was greater (16 and 1.6 folds; p less then 0.001; respectively) compared to that in control defects. No bone formation was observed in defects filled with BP regardeless of the size. In 8-mm-diameter defect, PDBM was effective enough to induce the upregulation of genes pertinent to inflammation (i.e., TNFα, IL-6, and IL-8), angiogenesis (i.e., VEGF, VWF), and osteogenesis (ALP, RUNX2, BGLAP, SP7) by day 3 after surgery. This study showed that the tested PDBM deeply influences the early critical events involved in bone regeneration and exhibits efficient osteoformation capacity, making it an attractive graft option for treating defects in periodontal and maxillofacial areas.Tendon being a hypocellular, low vascularized tissue often requires assistance for restoration after complete tear. Tendon tissue engineering aims in the development of suitable scaffold that could support the regeneration of tendon after damage. The success of such scaffolds is dependent on its integration with the native tissue which in turn is influenced by the cell-material interaction. In this work aligned poly(ε-caprolactone)/collagen (PCL/collagen) multiscale fibers were developed and plasma treatment using argon, nitrogen and its combination was accessed for inducing tenogenic differentiation in mesenchymal stem cells. The developed fibers mimicked tendon extracellular matrix (ECM) which upon plasma treatment maintained moderate hydrophilicity. Oxygen and nitrogen containing groups were observed to be incorporated after argon and nitrogen treatment respectively. Statistically significant (p less then 0.001) enhancement was observed in average and root mean square (RMS) roughness after plasma treatme by the expression of scleraxis, mohawk (early markers) and tenomodulin (late marker) at protein level and mohawk, collagen I, collagen III (early markers), thrombospondin 4 and tenascin C (late markers) at gene level. Thus argon plasma treatment on aligned fibers is an effective method to induce tenogenesis even in non-tenogenic media.The ideal bone substitute material should be mechanically strong, biocompatible with a resorption rate matching the rate of new bone formation. Brushite (dicalcium phosphate dihydrate) cement is a promising bone substitute material but with limited resorbability and mechanical properties. To improve the resorbability and mechanical performance of brushite cements, we incorporated gypsum (calcium sulfate dihydrate) and diazonium-treated polyglactin fibers which are well-known for their biocompatibility and bioresorbability. Here we show that by combining brushite and gypsum, we were able to fabricate biocompatible composite cements with high fracture toughness (0.47 MPa·m1/2) and a resorption rate that matched the rate of new bone formation. Adding functionalized polyglactin fibers to this composite cement further improved the fracture toughness up to 1.00 MPa·m1/2. XPS and SEM revealed that the improvement in fracture toughness is due to the strong interfacial bonding between the functionalized fibers and the cement matrix. This study shows that adding gypsum and functionalized polyglactin fibers to brushite cements results in composite biomaterials that combine high fracture toughness, resorbability, and biocompatibility, and have great potential for bone regeneration.Alginate fibrous materials have been applied as wound dressing to enhance wound healing due to its nontoxic, biodegradable, and hemostatic nature. Conventional nonwoven fabrication tactics, however, showed weakness in inflammation, degradation stability and mechanical properties. Herein, the wet-spun alginate fibers were prepared by a novel wheel spinning technique, then knitted into wound dressing. Benefiting from optimized wet spinning parameters and the agglomeration of alginate multimers, the fibers were endowed with elevated mechanical performances and biodegradability, which allowed for the feasibility of knitting wound-care materials. Using the new wheel spinning technique, high strength alginate fibers with 173 MPa were produced with breaking strain up to 18% and toughness of 16.16 MJ*m-3. Meanwhile, alginate fibers with high breaking strain reaching 35% were produced with tensile strength of 135 MPa and toughness of 37.47 MJ*m-3. The overall mechanical performances of these alginate fibers with high breaking strain are significantly higher (up to 2 times) than those published in the literature in term of toughness. In vitro degradation evaluation revealed that this wet spun fibrous dressing had good aqueous absorbency (50%) and sustained biodegradation properties. Furthermore, the consequent cell viability study also proved that this alginate knitted fabric is biocompatible for being applied as wound dressing.Seriously compromised function of some organs can only be restored by transplantation. Due to the shortage of human donors, the need to find another source of organs is of primary importance. Decellularized scaffolds of non-human origin are being studied as highly potential biomaterials for tissue engineering. Their biological nature and thus the ability to provide a naturally-derived environment for human cells to adhere and grow highlights their great advantage in comparison to synthetic scaffolds. Nevertheless, since every biomaterial implanted in the body generates immune reaction, studying the interaction of the scaffold with the surrounding tissues is necessary. This review aims to summarize current knowledge on the immunogenicity of semi-xenografts involved in transplantation. Moreover, positive aspects of the interaction between xenogeneic scaffold and human cells are discussed, focusing on specific roles of proteins associated with extracellular matrix in cell adhesion and signalling.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0