-
Newman May opublikował 1 rok, 3 miesiące temu
In conclusion, these findings illustrated that co-occurrence of ibuprofen and triclocarban residues have synergistic adverse effects to the environment and synergistically threaten human health.Perfluorooctanoic acid (PFOA), a synthetic and widely used chemical, has aroused wide public concern due to its persistence, bioaccumulation, and potential toxicity. To investigate splenic atrophy induced by PFOA, male mice were exposed to 0, 0.4, 2, or 10 mg/kg/d PFOA for 28 d. Results demonstrated that spleen weight and relative spleen weight (RSW) decreased in the 2 and 10 mg/kg/d PFOA exposure groups. Iron levels in the spleen and serum were also reduced in all PFOA exposure groups. Weighted gene co-expression network analysis (WGCNA) of 7 043 genes highlighted enrichment in cell cycle, autoimmunity, and anemia in the spleen. In addition, changes in the levels of hemoglobin, platelets, bilirubin, and heme oxygenase-1 were consistent with anemia. The ratio of total macrophages to M1 macrophages in the spleen, phagocytic ability of macrophages, and levels of cytokines such as TNF-α, IL-1β, and IL-6 all increased, thus suggesting the occurrence of autoimmune disorder. Therefore, we concluded that overactivation of macrophages may be an important reason for splenic atrophy induced by PFOA exposure.Tetrabromobisphenol A (TBBPA) is a widely used flame retardant, but the adverse outcomes induced by TBBPA has not been fully elucidated. In this study, TBBPA was detected in 54.9% of 102 female Chinese volunteers with an average serum concentration of 0.34 ng/mL. To investigate whether TBBPA induces adverse outcomes at environmentally relevant exposure doses, the mice were exposed to TBBPA for 14 and 28 days. The internal doses of TBBPA in mice serum were nearly the internal doses in volunteers. TBBPA significantly increased the secretion of some pro-inflammatory cytokines and suppressed immune responses in mice under such serum concentrations after 14- and 28-days exposure. Interestingly, uterine edema was observed in TBBPA-treated mice. In primary uterine cells model, the results showed TBBPA exposure suppressed THRβ expression, leading to the activation of the inflammatory PI3K/NF-κB signaling pathway. Our findings indicated that the uterus is the susceptible target organ of TBBPA and TBBPA exposure might increase risk of uterine cancer through deregulating inflammation pathways.Microplastics (MPs) can adsorb toxic chemicals in biological or environmental matrixes and thus influence their behavior and availability. In order to investigate how the combined pollution of MPs and toxic organic chemical influence microbial growth and metabolism, Escherichia coli (E. coli) was grown in a complex, well-defined media and treated with polystyrene microplastics (PS MPs) and dichloro-diphenyl-tricgloroethane (DDT) at human relevant concentration levels. In vivo metabolites captured by a novel solid phase microextraction (SPME) probe, were used to reflect the metabolic dysregulation of E. coli under different pollution stresses. Results showed that the toxic effect of DDT displayed a distinct dose-dependent phenomenon while the existence of PS decreased the growth and metabolic interference effect of DDT on E. coli. Adsorption results revealed a mechanism that PS weakened the adverse impact of DDT by decreasing its free concentration in the treated culture media. Tricarboxylic acid (TCA) cycle related enzymes activities and antioxidant defense related substances of E. coli also proved the mechanism. The current study is believed to broaden our understanding of the ecotoxicity of MPs with toxic organic chemicals on microorganism.Ageing process can significantly alter the structural properties, environmental behaviors and potential ecotoxicity of microplastics (MPs) in water. In this study, the structural properties of aged polystyrene (PS) MPs being exposed to UV/H2O, UV/H2O2 and UV/Cl2 artificially accelerated oxidation processes and related sorption behaviors of bisphenol A (BPA) on those virgin/aged PS were investigated. The surface oxidation and hydrophilicity of aged PS were significantly increased according to infrared spectroscopy (IR) and water contact angle (CA) measurements. The differential scanning calorimetric (DSC) and gel permeation chromatography (GPC) revealed apparent degradation of aged PS especially in their amorphous domain. Obviously deteriorative BPA sorption capacity on aged PS was observed compared with that of virgin PS. The sorption rates of BPA on aged PS were accelerated and sorption of BPA shifted from partition dominant mechanism on virgin PS to the adsorption dominant mechanism through being fitted with the dual-mode sorption model. Besides, ageing in UV/Cl2 system introduces C-Cl groups on the surface of PS which strengthen the combination with BPA through halogen bonding interaction. Salt and dissolved organic matters (DOM) in marine water may increase the BPA sorption on aged MPs due to enhanced polar interaction.Engineering nanoparticles (NPs) could act as accumulator and carrier of co-contaminants, affecting their fate and toxicity in environments. However, the effects of NPs on the bioaccumulation and trophic transfer of co-contaminants through the food chain and the ensuing effects on higher predators are unclear. In the present study, we investigated the effects of titanium dioxide nanoparticles (nTiO2) on the trophic transfer of phenanthrene (Phe) from prey Artemia salina to predator Scophthalmus maximus. We also evaluated the ensuing toxic performance of Phe in S. maximus after been transferred from A. salina in the presence and absence of nTiO2. The presence of nTiO2 significantly (p less then 0.05) increased Phe accumulation in A. salina with higher bioconcentration factor (BCF) up to 90.9 than that of 38.6 in Phe exposure along. After trophic transfer, nTiO2 (1 mg/L) also promoted the bioaccumulation of Phe (1 μg/L) in predator S. maximus from 4.17 mg/kg to 7.85 mg/kg (dry weight). However, nTiO2 did not enhance the trophic transfer of Phe from A. salina to S. maximus since the biological magnification factor (BMF) decreased from 0.13 to 0.08. Nevertheless, the nTiO2-enhanced bioaccumulation of Phe did enhance Phe toxicity performance in predator S. maximus after trophic transfer, showing significant (p less then 0.05) growth inhibition and changes of nutrient status in the predator, compared to those of the control. Further physio-biochemical investigations suggested that oxidative stress and inhibition of digestive functions might explain the growth inhibition in treatment with nTiO2 + Phe. This study demonstrates the first evidence that NP-enhanced bioaccumulation and toxic performance of co-existing pollutants across trophic transfer, which poses potential risks to marine ecosystems, and ultimately human health by seafood consumption.The mechanistic effects of long-term γ irradiation on the mineralogical, microstructural, structural, physical, and chemical properties of 40 wt% blast furnace slag + 60 wt% fly ash geopolymer pastes have been examined. Ambient curing for 28 days during normal equilibration was followed by exposure to 60Co irradiation (1574, 4822, 10,214 kGy). The material characteristics are controlled largely through the competing mechanisms of beneficial equilibration at initial lower dosages, which enhances gelation and crosslinking, and detrimental equilibration at subsequent higher dosages, which causes structural and microstructural destabilisation. Irradiation for 2 months (1574 kGy) increases the compressive strength ~45% (~57 to ~83 MPa) through conversion of less-crosslinked (Q0/Q1/Q1′) to more-crosslinked (Q2/Q3/Q4) silicate species. The transition between these regimes occurs after ~5 months of irradiation (~4000 kGy). Beyond this, the rates of beneficial equilibration and detrimental equilibration equalise upon completion of normal geopolymerisation. Additional geopolymerisation from γ irradiation is controlled by the rate-limiting release of Si4+ from the unreacted aluminosilicates and silicates and their rapid incorporation in the geopolymer network. The aqueous leaching of the geopolymer pastes is not affected significantly by γ irradiation. These data reveal the potential for these materials as intermediate-level wasteforms that can outperform Portland cement-based materials.The results of Cd (cadmium) concentration, Cd2+ fluorescent staining, NMT (non-invasive micro-test technology) analysis of Cd absorption revealed the remarkably positive role of HRW in reducing Cd uptake by root of pak choi seedlings. BcIRT1 (iron-regulated transporter 1) and BcZIP2 (zinc-regulated transporter protein 2) are the main Cd transporters in pak choi, but their roles in the process of HRW-reduced Cd uptake is still far from being answered. In this study, we specifically verified the function of IRT1 and ZIP2 in HRW-reduced Cd absorption in pak choi and Arabidopsis thaliana. Heterologous and homologous expression in Arabidopsis thaliana displayed that Cd concentrations in wild-type (Col-0) and transgenic A. thaliana of IRT1 and ZIP2 were significantly reduced by HRW, except for irt1- and zip2-mutant. NMT detection showed that HRW not only decreased Cd2+ influx in root of WT and transgenic lines, but also enhanced the competition between Zn and Cd. Taken together, the HRW-induced reduction of Cd accumulation in plants may be result from depressing the expression of BcIRT1 and BcZIP2 and affecting the preference of BcIRT1 and BcZIP2 in ion uptake.Functional neuroimaging of speech processing has both research and clinical potential. This work is facilitating an ever-increasing understanding of the complex neural mechanisms involved in the processing of speech. Neural correlates of speech understanding also have potential clinical value, especially for infants and children, in whom behavioural assessments can be unreliable. Such measures would not only benefit normally hearing children experiencing speech and language delay, but also hearing impaired children with and without hearing devices. In the current study, we examined cortical correlates of speech intelligibility in normally hearing paediatric listeners. Cortical responses were measured using functional near-infrared spectroscopy (fNIRS), a non-invasive neuroimaging technique that is fully compatible with hearing devices, including cochlear implants. In nineteen normally hearing children (aged 6 – 13 years) we measured activity in temporal and frontal cortex bilaterally whilst participants liste represent sensitivity to components of the default mode network in lateral temporal regions, and hence effortful listening in normally hearing paediatric listeners. Our results indicate that fNIRS has the potential to provide an objective marker of speech intelligibility in normally hearing children. Should these results be found to apply to individuals experiencing language delay or to those listening through a hearing device, such as a cochlear implant, fNIRS may form the basis of a clinically useful measure of speech understanding.Multiple auditory structures, from cochlea to cortex, phase-lock to the envelope of complex stimuli. The relative contributions of these structures to the human surface-recorded envelope-following response (EFR) are still uncertain. Identification of the active contributor(s) is complicated by the fact that even the simplest two-tone (f1&f2) stimulus, targeting its (f2-f1) envelope, evokes additional linear (f1&f2) and non-linear (2f1-f2) phase-locked components as well as a transient auditory brainstem response (ABR). Here, we took advantage of the generalized primary tone phase variation method to isolate each predictable component in the time domain, allowing direct measurements of onset latency, duration and phase discontinuity values from which the involved generators were inferred. Targeting several envelope frequencies (0.22-1 kHz), we derived the EFR transfer functions along a vertical vertex-to-neck and a horizontal earlobe-to-earlobe recording channels, yielding respectively EFR-V and EFR-H waveforms.


