-
Agger Sandberg opublikował 5 miesięcy, 2 tygodnie temu
Pressure/proximity sensing as the essential function of electronic skin (e-skin) has become an emerging technological goal for new-generation electronic devices in a wide variety of application fields, for example, smart electronics, human-machine interaction, and prosthetics. However, the current research lacks pressure/proximity detection of the stretched e-skin, which ignores the key elastic characteristic of skin and hinders the development of e-skin. Here, the pressure/proximity detection of the transparent e-skin in the stretching state is demonstrated based on poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOTPSS)/single-walled carbon nanotube (SWCNT). The high transparency of the e-skin realizes the visual imperception for wearable electronic systems. The perfect combination of stretchable SWCNT and highly conductive PEDOTPSS endows the sensors with high stretchability and high discrimination capability toward strain, providing an effective way to overcome the interference of strain to realize accurate pressure/proximity detection of stretched e-skin at different strains.Nonmesoporous Janus silica nanobowls (NBs) are unique in that they possess two different nonporous surfaces per particle for loading biological molecules and can thus be designed with multifunctional properties. Although silica NBs have been successfully employed for both targeted therapeutic and diagnostic applications, their ability to deliver DNA has not yet been fully explored. The purpose of this study was to design and develop an in vitro transfection agent that would exploit the distinct characteristics of the silica NB. First, we determined that the NB surface can be linked to either supercoiled cDNA plasmids or vectorless, linear cDNA constructs. Additionally, the linearized cDNA can be functionalized and chemisorbed on NBs to obtain a controlled release. Second, the successful transfection of cells studied was dependent on lipid coating of the NB (LNBs). Although both NBs and LNBs were capable of undergoing endocytosis, NBs appeared to remain within vesicles as shown by transmission electron microscopy (TEM). Third, fluorescence microscopy and Western blotting assays revealed that transfection of four different cell lines and acutely isolated rat sensory neurons with LNBs loaded with either linear or supercoiled cDNA constructs coding for the fluorescent protein, clover and tdTomato, resulted in protein expression. Fourth, two separate opioid receptor-ion channel signaling pathways were functionally reconstituted in HEK cells transfected with LNBs loaded with three separate cDNA constructs. Overall, these results lay the foundation for the use and further development of LNBs as in vitro transfection agents.Emulsified isoflurane (EISO) is an intravenous anesthetic. However, researchers have not clearly determined how emulsified isoflurane affects the central nervous system during the process of anesthesia. The aim of this study was to explore changes in the gamma-aminobutyric acid type A receptor subunit (GABAA), 61 kD isoform of striatal-enriched protein phosphatase (STEP61) signaling pathway, and epigenetic regulation in cortical neurons after treatment with emulsified isoflurane. After immunological identification, the isolated neurons were randomly divided into three groups the blank group (Con), intralipid treatment group (FE), and emulsified isoflurane treatment group (EISO). Neuron viability was assayed using cell counting kit-8 (CCK-8). The expression levels of target nucleic acids, proteins, and corresponding ligands were detected. Using real-time polymerase chain reaction (PCR) to assess the promoter methylation of ion channel proteins in the cerebral cortex of rats anesthetized with EISO, we observed changes in promoter methylation of the genes encoding gamma-aminobutyric acid type A receptor α1 subunit (GABAAα1), N-methyl-d-aspartate receptor subunit 1 (NMDAR1), and mu opioid receptor 1 (OPRM1), accompanied by changes in the levels of their messenger ribonucleic acids (mRNAs) and proteins. The levels of ligands for these receptors were also altered. EISO altered the methylation rate of the promoter region of channel protein-coding genes involved in the GABAA/STEP61 signaling pathway in cerebral cortical neurons to regulate gene expression. The ligands for the receptors were also changed.Hepatocellular carcinoma (HCC) is characterized by a high mortality and early diagnosis and treatment are critically needed. Ang II type 1 receptor (AT1R) has recently emerged as a potential molecular target for cancer diagnosis and intervention. Here, we labeled angiotensin II (Ang II), an AT1R ligand that is overexpressed in various solid cancers, with the near-infrared fluorescent dye, MPA, and radionuclide technetium-99m, and evaluated its capacity for HCC detection. These analyses were done in vitro using HepG2 (AT1R-positive) and BxPC3 (AT1R-negative) cell lines, and in vivo using a subcutaneous and orthotopic xenograft mouse model by fluorescence and SPECT imaging. Both Ang II-PEG4-MPA- and [99mTc]Tc-HYNIC-PEG4-Ang II-bound AT1R exhibited a high affinity in vitro and [99mTc]Tc-HYNIC-PEG4-Ang II displayed an acceptable level of in vitro stability in rat plasma and whole blood. In vivo imaging revealed excellent specific tumor-targeting in HepG2 mouse xenografts models. In vitro and in vivo competition experiments revealed specific Ang II-PEG4-MPA and [99mTc]Tc-HYNIC-PEG4-Ang II uptake by HepG2 cells and tumors. Altogether, AT1R-positive tumors were successfully detected via fluorescence and SPECT imaging using Ang II-PEG4-MPA and [99mTc]Tc-HYNIC-PEG4-Ang II, respectively. Given their superior targeting capacity, Ang II-PEG4-MPA and [99mTc]Tc-HYNIC-PEG4-Ang II are promising tools for HCC detection and warrant clinical translation.Objective Random formation of thrombi is classified as a pathological process that may result in partial or complete obstruction of blood flow and limited perfusion. Further complications include pulmonary embolism, thrombosis-induced myocardial infraction, ischemic stroke, and others. Location and full delineation of the blood clot are considered to be two clinically relevant aspects that could streamline proper diagnosis and treatment follow-up. In this work, we prepared two types of X-ray attenuating contrast formulations, using fibrinogen aptamer as the clot-seeking moiety. Methods Two novel aptamer-targeted formulations were designed. Iodine-modified bases were directly incorporated into a fibrinogen aptamer (iodo-FA). Isothermal titration calorimetry was used to confirm that these modifications did not negatively impact target binding. Iodo-FA was tested for its ability to produce concentration-dependent contrast enhancement in a phantom CT. It was subsequently tested in vitro with clotted human and swiid artery. This resulted in a 34% enhancement of the clot. Conclusions Both iodo-FA and FA-AuNPs were confirmed to be effective contrast formulations in CT. Targeting of fibrin, a major structural constituent of thrombi, with these novel contrast agents would allow for higher contrast enhancement and better clot delineation in CT and fluoroscopy.A nano-gravimetric detector (NGD) for gas chromatography is based on a nanoelectromechanical array of adsorbent-coated resonating double clamped beams. NGD is a concentration-sensitive detector and its sensitivity is analyte-dependent based on the affinity of the analyte with the porous layer coated on the NEMS surface. This affinity is also strongly related to the NGD temperature (NGD working temperature can be dynamically set up from 40 to 220 °C), so the sensitivity can be tuned through temperature detector control. An adsorption-desorption model was set up to characterize the NGD response on a large set of n-alkanes from C10 to C22 at different NGD temperatures. For fast identification of petroleum mixture based on chromatogram fingerprint, a general strategy for NGD temperature program design was developed leading to a constant relative response factor between 0.96 and 1.03 for all the alkanes, and then chromatograms are very similar to those obtained with a flame ionization detector (FID). The analysis of a real petroleum fluid was also performed and compared to FID results quantitative results obtained for all the analytes were satisfactory according to precision ( less then 5%) and accuracy (average relative error = 4.3%). Based on such temperature control strategy, NGD sensitivity and the dynamic linear range can be adjusted and detection limits at a picogram level can be easily achieved for all n-alkanes.Natural, extracellular membrane vesicles secreted by Gram-negative bacteria, outer membrane vesicles (OMVs), contain numerous pathogen-associated molecular patterns which can activate systemic immune responses. Previous studies have shown that OMVs induce strong IFN-γ- and T cell-mediated anti-tumor effects in mice. However, IFN-γ is known to upregulate immunosuppressive factors in the tumor microenvironment, especially the immune checkpoint programmed death 1 ligand 1 (PD-L1), which may hamper T cell function and limit immunotherapeutic effectiveness. Here, we report the development of genetically engineered OMVs whose surface has been modified by insertion of the ectodomain of programmed death 1 (PD1). This genetic modification does not affect the ability of OMVs to trigger immune activation. More importantly, the engineered OMV-PD1 can bind to PD-L1 on the tumor cell surface and facilitate its internalization and reduction, thereby protecting T cells from the PD1/PD-L1 immune inhibitory axis. Through the combined effects of immune activation and checkpoint suppression, the engineered OMVs drive the accumulation of effector T cells in the tumor, which, in turn, leads to a greater impairment of tumor growth, compared with not only native OMVs but also the commonly used PD-L1 antibody. In conclusion, this work demonstrates the potential of bioengineered OMVs as effective immunotherapeutic agents that can comprehensively regulate the tumor immune microenvironment to effect markedly increased anti-tumor efficacy.A key issue of molecular electronics (ME) is the correlation between the molecular structure and the charge transport properties of the molecular framework. Accordingly, a variety of model and potentially useful molecular systems are designed, to prove a particular function or correlation or to build a prototype device. These studies usually involve the measurements of the static electric conductance properties of individual molecules and their assembles on solid supports. At the same time, information about the dynamics of the charge transport (CT) and transfer in such systems, complementary in the context of ME and of a scientific value on its own, is quite scarce. Among other means, this drawback can be resolved by resonant Auger electron spectroscopy (RAES) in combination with core hole clock (CHC) approach, as described in this Account. The RAES-CHC scheme was applied to a variety of aliphatic and aromatic self-assembled monolayers (SAMs), adsorbed on Au(111) over the thiolate and selenolate docking grout the side positions) and the ET efficiency was recorded. Several representative examples for the resonantly addressable tail groups are given, and perspectives for future research in the context of ET dynamics in molecular assemblies are discussed.