• Wilder Poole opublikował 1 rok, 3 miesiące temu

    Photobiomodulation (PBM) is reported to impart a range of clinical benefits, from the healing of chronic wounds to athletic performance enhancement. The increasing prevalence of this therapy conflicts with the lack of understanding concerning specific cellular mechanisms induced by PBM. Herein, we systematically explore the literature base, specifically related to PBM (within the range 600-1070 nm) and its influence on dermal fibroblasts. The existing research in this field is appraised through five areas cellular proliferation and viability; cellular migration; ATP production and mitochondrial membrane potential; cellular protein expression and synthesis; and gene expression. This review demonstrates that when fibroblasts are irradiated in vitro within a set range of intensities, they exhibit a multitude of positive effects related to the wound healing process. However, the development of an optimal in vitro framework is paramount to improve the reliability and validity of research in this field.The morbidity and mortality of melanoma which accounts for 90% of cutaneous neoplasm-related deaths is growing over the last few decades. Common treatments for melanoma are limited to poor tissue selectivity, high toxicity and drug resistance. Photodynamic therapy (PDT) is an effective adjuvant therapy and could be a promising therapy for melanoma. Multiple mechanisms are involved in PDT2 and programmed cell death (PCD) which comprises of autophagy and apoptosis is likely to be a critical one. Whereas, the molecular mechanism and subsequent effect of PDT-induced autophagy in melanoma are still unclear. In this study, we first analyzed gene expression data in the TCGA3 and GEO4 databases to clarify that PDT-induced-autophagy improved the prognosis of melanoma. The expression of FOS which generally defined as an immediate-early gene (IEG) and related to cell autophagy was found significantly elevated after PDT. To further investigate whether FOS played a key role in PDT-induced-autophagy of melanoma, we first determined the optimum concentration of ICG solution for autophagy observation. Then, relative FOS expression was detected at mRNA and protein level and cell autophagy was observed by western blot and flow cytometry. We found that ICG-PDT treatment could significantly elevate FOS expression in SKCM5 B16 cells, and FOS promoted ICG-PDT-induced cell autophagy. To sum up, our data indicated that FOS was involved in ICG-PDT-induced-autophagy in melanoma and furthermore improved the prognosis of melanoma.

    The aim of this paper is to assess whether the use of natural metalinguistic skills can be used to differentiate linguistic-communicative profiles of people with dementia (Alzheimer’s disease and frontotemporal dementia in the behavioural and primary progressive aphasia variants) in the earliest stages of the disease.

    A sample of 180 people was selected. Sixty had Alzheimer’s disease, 20 had frontotemporal dementia of the behavioural variant, and 40 had frontotemporal dementia of the primary progressive aphasia variant (20 had non-fluent primary progressive aphasia and 20 had semantic dementia). The control group was composed of 60 healthy people with ages, gender, and professions as similar as possible to those of the people in the dementia groups. All the participants were administered the Spanish adaptation of the Mini-Mental State Examination (MMSE) and the Global Deterioration Scale (GDS) to assess dementia severity. To assess the use of natural metalinguistic skills, a 40-item test (MetAphAs), species according to the type of dementia in the early stages of the disease. However, additional research is needed to obtain more conclusive results.Water quality was highly affected by common pollutants. Metals, pesticides and small molecules are ubiquitous pollutants. Advancement in engineering technology (computer-based monitoring systems) increased the efficiency of quantifying toxicity of different chemicals in an organism. The cardiovascular system reflects internal and external stress of an organism, and electrocardiogram (ECG) data reliably measure external stress. As ECG data can accurately reflect the physiological conditions of organisms, and zebrafish (Danio rerio) are considered to be good models for cardiovascular research, it is hypothesized that ECG parameters of zebrafish could indicate the toxicity of water-borne chemicals. To achieve this, we treated zebrafish with different concentrations of target chemicals (CuSO4, C10H19O6PS2 and NH4Cl) for 48 h and ECG data were measured. P-wave, R-wave, T-wave, PR-interval, QRS-complex and QT-interval data were the focus of this study. The results of self-organizing maps and Pearson correlation analysis indicate that the QRS-complex can be used as an indicator for CuSO4 stress. The QT-interval could be used to assess the C10H19O6PS2 stress. The QT-interval and P-wave can be used to evaluate the NH4Cl stress. Responses of zebrafish ECG parameters were identical with other vertebrate model, and were specific to toxicant types. It is proved that zebrafish heart ECG index could be used as a potential indicator in early detection of environmental stress.The combination of different microorganisms and their metabolisms makes the use of microbial consortia in bioremediation processes a useful approach. In this sense, this study aimed at structuring and selecting a marine microbial consortium for Remazol Brilliant Blue R (RBBR) detoxification and decolorization. Experimental design was applied to improve the culture conditions, and metatranscriptomic analysis to understand the enzymatic pathways. A promising consortium composed of Mucor racemosus CBMAI 847, Marasmiellus sp. CBMAI 1062, Bacillus subtilis CBMAI 707, and Dietzia maris CBMAI 705 was selected. This consortium showed 52% of detoxification and 86% of decolorization in the validation assays after seven days of incubation in the presence of 500 ppm of RBBR. Reduction in RBBR color and toxicity were achieved by biosorption and microbial metabolisms. Metatranscriptomic data indicate that the consortium was able to decolorize and breakdown the RBBR molecule using a coordinated action of oxidases, oxygenases, and hydrolases. Epoxide hydrolases and glyoxalases expression could be associated with the decrease in toxicity. The efficiency of this marine microbial consortium suggests their use in bioremediation processes of textile effluents.In this work, the prepared mesoporous TiO2 was employed to eliminate the environmental risk induced by the combined pollution (tris-(2-chloroisopropyl) phosphate (TCPP) and Cd2+). The prepared material was characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-DRS), Raman imaging spectrometer (Raman), N2 adsorption/desorption isotherm and X-ray photoelectron spectroscopy (XPS). In the combined pollution system, the prepared TiO2 simultaneously exhibited a higher adsorption and photocatalytic activity for Cd2+ and TCPP at neutral condition, respectively. The adsorption of Cd2+ and photo-degradation of TCPP by mesoporous TiO2 followed pseudo-second-order and pseudo-first-order kinetics model, respectively. The removal efficiency of TCPP was improved from 67% to 100% when the concentration of co-existed Cd2+ increased from 0.5 mg L-1 to 2 mg L-1, due to the fact that the adsorbed Cd2+ on the surface of TiO2 scavenged electron and thus inhibited the photo-generated electron-hole pairs recombination. In addition, six degradation intermediates were determined by high resolution mass spectrum (HRMS) and potential transformation pathways of TCPP under the co-existence of Cd2+ were proposed. The results suggested that rapid and high-efficient simultaneous removal of Cd2+ and TCPP was feasible, which laid the basis for the remediation of other combined pollution in the future.Organohalide-respiring bacteria (OHRB) remove halogens from a variety of organohalides, which have been utilized for in situ remediation of different contaminated sites, e.g., groundwater, sediment and soil. Nonetheless, dehalogenation activities of OHRB and consequent remediation efficiencies can be synergistically affected by water content, soil type and inoculated/indigenous OHRB, which need to be disentangled to identify the key driving parameter and to elucidate the underlying mechanism. In this study, we investigated the impacts of water content (0-100%), soil type (laterite, brown soil and black soil) and inoculated OHRB (Dehalococcoides mccartyi CG1 and a river sediment culture) on reductive dechlorination of perchloroethene (PCE) and polychlorinated biphenyls (PCBs), as well as on associated microbial communities. Results suggested that the water content as a primary rate-limiting parameter governed dechlorination activities in environmental matrices, particularly in the soil, possibly through mediation of cell-to-organohalide mobility of OHRB. By contrast, interestingly, organohalide-dechlorinating microbial communities were predominantly clustered based on soil types, rather than water contents or inoculated OHRB. This study provided knowledge on the impacts of major parameters on OHRB-mediated reductive dechlorination in groundwater, sediment and soil for future optimization of in situ bioremediation of organohalides.This work reports a simple method to prepare nickel-phosphorus (Ni-P) alloy modified CuO (Ni-P/CuO) composite, which shows excellent performance in terms of photodegradation antibiotics, particularly regarding the antibacterial properties. The Ni-P/CuO composites were prepared via two steps. The first step was to produce CuO by the hydrothermal method and the second step was to grow Ni-P in-situ on the surface of CuO through electroless plating. After loading of Ni-P, the photocatalytic activity of CuO for the decomposition of antibiotics is significantly increased under visible light irradiation. The photocatalytic activity of Ni-P/CuO with 4 wt% Ni-P loading is 25 times higher than that of CuO. Compared with CuO, the antibacterial activity of Ni-P/CuO with 4 wt% Ni-P loading against Escherichia coli is strongly increased. Based on the photoluminescence and photocurrent measurements of CuO and Ni-P/CuO, Ni-P cocatalyst improves the separation and transfer of the photogenerated charge in CuO, and enhances the photocatalytic activity of antibacterial performance. This work reveals that using Ni-P as the cocatalyst can strengthen the photocatalytic performance of CuO, which has great application potential in water purification and antibacterial treatments.Student performance can be affected by internal and external stressors, so we explored the effects of an experiential psychiatric/mental health nursing class designed to present methods of stress reduction. Mixed methods to assess the effects of experiential learning about self-care in a baccalaureate psychiatric nursing class were used with 113 nursing students. Students were exposed in class each week to one of 6 techniques deep breathing, progressive muscle relaxation, mindfulness & exercise, aromatherapy, guided imagery, and yoga. Students used the method at home and journaled about the experience weekly. Journals and free-text responses from a post-intervention assessment were examined with qualitative content analysis. The Beck Anxiety Inventory, the Ten-Item Personality Inventory, and the Skovholt Practitioner Professional Resiliency and Self-Care inventory were used. Moderate to strong negative correlations between emotional stability (Ten-Item) and anxiety scores (Beck) was seen. Themes included physical/emotional effects of stress, lack of control during nursing school, and fears about communicating with psychiatric patients.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0