-
Heller Carroll opublikował 1 rok, 3 miesiące temu
Plan long-duration workdays (e.g., 12-h). For cases where the surgical procedure does not cause aerosol production, but general anesthesia will be used, have initial (phase I) post-anesthesia recovery in the operating room where the surgery was done. Use anesthetic practices that achieve fast initial recovery of the brief ambulatory cases. When the surgical procedure causes aerosol production (e.g., bronchoscopy), conduct phase I recovery in the operating room and use multimodal environmental decontamination after each case. Use statistical methods to plan for the resulting long turnover times. Whenever possible, have the anesthesia and nursing teams stagger cases in more than one room so that they are doing one surgical case while the other room is being cleaned. In conclusion, this review shows that while COVID-19 is prevalent, it will markedly affect daily ambulatory workflow for patients undergoing general anesthesia, with potentially substantial economic impact for some surgical specialties. A compulsory national BVD eradication programme commenced in Ireland in 2013. Since then considerable progress has been made, with the animal-level prevalence of calves born persistently infected (PI) falling from 0.67 % in 2013 to 0.06 % in 2018. The herd-level prevalence fell from 11.3 % in 2013 to 1.1 % in 2018. In the Irish programme, herds in which all animals have a known negative status and which have not contained any PI animals for 12 months or more are assigned a negative herd status (NHS). While considerable progress towards eradication has been made, PI calves have been identified in a small proportion of herds that had previously been assigned NHS. Given this context, a case-control study was conducted to investigate potential risk factors associated with loss of NHS in 2017. 546 herds which had NHS on 1 January 2017 and lost that status during 2017 (case herds) were matched with 2191 herds (control herds) that retained their NHS status throughout 2017. Previous history of BVD infection, herd size, herd expansion, the purchase of cattle including potential Trojan cattle and the density of BVD infection within 10 km of the herd emerged as significant factors in a multivariable logistic regression model. This work adds to the evidence base in support of the BVD eradication programme, particularly establishing why BVD re-emerged in herds which had been free of BVD for at least the previous 12 months prior to the identification of a BVD positive calf. This information will be especially important in the context of identifying herds which may be more likely to contain BVD positive animals once the programme moves to herd-based serology status for trading purposes in the post-eradication phase. High-performance liquid chromatography (HPLC) and solid phase micro membrane tip extraction (SPMMTE) methods are developed for the simultaneous analysis of eleven cardiovascular drugs in human plasma. Iron nanoparticles were obtained by the green method, characterized by XRD, FT-IR, TEM, and EDS and utilized in SPMMTE for sample preparation. The mobile phase used was ammonium acetate buffer-methanol-acetonitrile (651817) with a 1.0 mL/min flow rate at 260 nm detection. Column used was Sunshell C18 150 × 4.6 mm, 2.6 µm. The values of k, α, and Rs were ranged from 040 to109.22, 1.20 to 2.67 and 1.0 to 26.18. SPMMTE and HPLC methods were fast, reproducible, precise, robust, economic and rugged for analysis of methyldopa, hydrochlorothiazide, prazosin hydrochloride, furosemide, labetalol, propranolol, valsartan, losartan potassium, diltiazem, irbesartan and spironolactone in human plasma. The recoveries (%) of methyldopa, hydrochlorothiazide, prazosin hydrochloride, furosemide, labetalol, propranolol, valsartan, losartan potassium, diltiazem, irbesartan, and spironolactone were 91.0, 85.2, 92.3, 90.4, 90.1, 85.6, 86.6, 86.2, 85.1, 86.6, and 85.7, respectively. These results showed that SPMMTE and HPLC methods can be applied to test the described drugs in several matrices. INTRODUCTION Ultrafiltration (UF) is used to separate unbound drugs; however, non-specific binding (NSB) may be a limiting factor of this technique. Pretreatment of UF devices has been suggested to reduce NSB. Therefore, the pretreatment methodologies for UF devices were evaluated in order to test their effectiveness in reducing NSB of protease inhibitors (PIs). METHODOLOGY Two PIs (lopinavir-LPV and ritonavir-RTV) were tested. UF devices were pretreated with ultrapure water, Tween-20 or Tween-80. To evaluate the NSB, after UF devices being pretreated, ultrafiltrate solutions containing the analytes at two concentrations (low and high) were used. Samples were quantified by LC-MS/MS. RESULTS UF devices pretreated with Tween-5% had the lowest NSB for both analytes. NSB values varied between 7 and 11% at low concentration 16-34% at high LPV concentration, respectively. For RTV, NSB was approximately 6% for low concentration and 18% for high concentration. Failure to completely remove Tween in UF devices could results in an overestimation of NSB. CONCLUSION Pretreatment of UF device with Tween and subsequent removal proved to be effective in reducing NSB of PI. In terms of risk assessment, the study of the impurity profile is important to ensure the safety and effectiveness of drugs in clinical application. Sixteen-membered macrolides are produced by microbial fermentation, and many closely related substances in the product make the components and impurities complicated. In this study, methods were developed to separate and identify the impurities in three representative 16-membered macrolides (josamycin, midecamycin and meleumycin) using a high-performance liquid chromatography coupled to high-resolution ion trap/time-of-flight mass spectrometry (IT-TOF MS). In total, 53 impurities were characterized in the positive mode of electrospray ionization, among which 28 novel impurities were found. The proposed structures of impurities were deduced based on MS/MS data, and the ultraviolet (UV) absorption behaviors of impurities were discussed. In addition to the impurities with maximum absorption wavelengths (λmax) of 231 nm and 280 nm, there was a new group of impurities with λmax of 205 nm in meleumycin, midecamycin and josamycin. V.Native mass spectrometry (native MS) has seen tremendous development and an increase in application over the past decade for the study of proteins and protein complexes. Although conventionally performed using a static nanospray emitter in an offline fashion, native MS has been increasingly applied in hyphenated methods, where a wide variety of separation techniques are directly coupled to online native MS detection. Those new developments have greatly expanded the utility of native MS in protein biopharmaceutical characterization. Analytical hydrophobic interaction chromatography (HIC) method, although frequently used for the characterization of monoclonal antibodies (mAbs) and antibody-drug-conjugates (ADCs), has rarely been explored for online coupling with native MS. This is largely due to the high salt concentrations used in HIC analysis that are not compatible with direct MS detection. In this study, we overcame this challenge via an innovative makeup and splitting flow design and successfully achieved d identity elucidation for the HIC-UV method used in quality control. Ulcerative colitis (UC), an immune system disease, is characterized by long duration and easy relapse. Sophora flavescens (S. flavescens), also named „Kushen”, is a traditional Chinese medicine, widely used to treat UC in clinics. Alkaloids and flavonoids are the main constituents of S. flavescens. Previous studies indicated that the effects of S. flavescens against UC mainly attribute to its alkaloids. In view of the clinical applications of its flavonoids and our preliminary experiments on the effects of S. flavescens treatment, we speculated that flavonoids also could exert an anti-UC effect, but its efficacy and mechanism are still not yet to be revealed. Herein, we examined the pharmacodynamic effects of the ethyl acetate (EtOAc) extract of S. flavescens EtOAc (SFE) against dextran sodium sulfate-induced UC rats for the first time. Pharmacodynamic effects indicated that SFE could significantly alleviate the loss in the body weight and shortening of the colon length, reduce colon bleeding and improve colon tissue damage of UC rats. A total of 28 prototypes and 41 metabolites were unambiguously or tentatively detected in rat’s plasma and urine. Among them, 28 prototypes and 3 phase I metabolites shared 40 UC targets, the targets contributed to 51 metabolic pathways in 5 modules. Additionally, genistein, formononetin, isokurarinone, kurarinone, maackiain, kushenol N, trifolirnizin, kuraridin and norkurarinone were suggested to be potential active compounds in SFE for treating UC by comprehensively investigating the results of network pharmacology analysis, metabolic analysis in vivo, and previous researches. Finally, a combination of metabolic analysis in vivo with network pharmacology can elucidate the material basis and pharmacodynamic effect of traditional Chinese medicines, and lay the foundation for further clarify the anti-UC mechanism of SFE. In this article, we report a comprehensive characterization of volatile and polar constituents extracted from the aerial parts of Thymus munbyanus subsp. coloratus, a shrub that is used as culinary ingredient and as traditional medicine in Algeria, mainly to treat respiratory and gastrointestinal disorders and endocrine dysfunctions. Headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used to assess volatile constituents, whereas the phytochemical composition of solid residues obtained from extraction with solvents at diffrent polarity was obtained by an integrated Nuclear Magnetic Resonance (NMR) and liquid chromatography coupled with tandem mass spectrometry (LC-MSn) approach. Fourty-five apolar ccompounds were identified, mainly oxygenated monoterpenes (65.8%), sesquiterpene hydrocarbons and nonoterpene hydrocarbons (18.6 and 14.5%, respectively). On the other hand, LC-MSn and NMR analyses revealed the presence of aglyconic and glycosilated flavonoids, phenylpropanoid derivatives and triterpenoid acids related to oleanolic acid, mainly in the methanol, dichloromethane and hexane extracts. Overall, these data indicate that Thymus munbyanus subsp. coloratus could be a potential source of antioxidants and bioactive compounds, and our results represent a starting point for further research on this plant species. Therapeutic monoclonal antibodies can potentially induce unwanted immune responses, resulting in the production of anti-drug antibodies (ADAs). The binding of ADAs to drugs and subsequent formation of immune complexes (ICs) can trigger various responses, dependent on the size, concentration, and subclass of ADAs. To better understand the impact of ADAs on pharmacokinetics, pharmacodynamics, and toxicological profiles, a bioanalytical method was developed for the detection of ICs between human monoclonal immunoglobulin G (IgG) and ADAs in biological samples. Regarding the experimental procedure, in brief, the human antibody-specific ICs and unbound human antibody in biological samples are separated through blue native polyacrylamide gel electrophoresis (BN-PAGE). The target fractions are then cut from the gel, followed by in-gel trypsin digestion and subsequent liquid chromatography tandem-mass spectrometry (LC-MS/MS) to monitor the human IgG-specific peptide. This method was able to detect various types of human antibodies with a lower limit of detection of 10 μg/mL in monkey serum. The assay performance for the detection of ICs was demonstrated using spiked samples, and pre-incubated ICs in monkey serum were clearly detected. Taken together, these findings indicate that our method enables a semi-quantitative analysis for estimating the ratio of human antibody included ICs in comparison to the total antibody. This method was successfully applied to an in vivo study using mice, and the data helped explain the unexpectedly rapid clearance of a humanized antibody due to the formation of large ICs. The combination of the separation of ICs by BN-PAGE and the detection of the human IgG-specific peptide by LC-MS/MS is a useful general bioanalytical approach for the detection of ICs in animals. A continuous-flow moving bed biofilm reactor (IAMBBR) alternating microaerobic and aerobic conditions was used to remove carbon, nitrogen and phosphorus through simultaneous nitrification and denitrification coupled to phosphorus removal (SNDPR). The IAMBBR was operated under different dissolved oxygen (DO) ranges (0.2-2, 0.2-3 and 0.2-4 mg L-1) and feed C/N ratios (2.8, 3.6 and 4.2) at HRT of 1 day. At a DO range of 0.2-3 mg L-1 and feed C/N ratio of 3.6, the IAMBBR achieved simultaneous removal of dissolved organic carbon (DOC), total inorganic nitrogen (TIN) and P-PO43- with average efficiencies of 100%, 62% and 75%, respectively. Illumina sequencing revealed the coexistence of nitrifiers and P-accumulating denitrifiers (e.g. Hydrogenophaga) in the IAMBBR biofilm. Batch activity tests showed that phosphorus uptake did not occur under stable anaerobic or anoxic conditions, nor under aerobic conditions in absence of nitrate. Nanoparticles have been commercially used worldwide; however, there is a lack of information of their environmental impacts and ecotoxicity. In this study, the effect of cerium oxide nanoparticle (CeO2NP) on a green microalga Scenedesmus obliquus, and microalgal biodegradation of four sulfonamides (sulfamethazine, sulfamethoxazole, sulfadiazine, and sulfamethoxazole) was investigated. There is insignificant inhibition of microalgal growth induced by CeO2NP; however, it substantially influenced the expression of genes involved in key cellular metabolic activities of S. obliquus. For example, genes involved in photosynthetic activity (psbA) and energy production (ATPF0C) were downregulated with exposure to CeO2NP. The low concentrations of CeO2NP improved microalgal degradation of sulfonamides. This may be because of the upregulated genes encoding hydrogenase and oxidoreductase. The exploration of this study has provided a new understanding of the environmental impacts of CeO2NP on microalgae-based biotechnologies for treatment of wastewater containing emerging organic contaminants. Granule-based immobilization of anammox biomass assisted by polyvinyl alcohol/chitosan (PVA/CS) and PVA/CS/Fe gel beads was studied, via the operation of three identical up-flow reactors (R1 without gel beads, R2 with PVA/CS, R3 with PVA/CS/Fe) for 203 days. In the end, the nitrogen removal rates (NRR) were 5.3 ± 0.4, 10.0 ± 0.3 and 13.9 ± 0.5 kg-N m-3 d-1 for R1, R2 and R3, respectively. The porous PVA/CS and PVA/CS/Fe created a suitable eco-niche for anammox bacteria to grow and attach, thus being retained in the reactor. The EPS entangles newly grown cells within the gel beads, resulting in compact aggregation. The interaction between Fe ions added to PVA/CS/Fe gel beads and negatively charged EPS groups strongly promoted granule strength and compactness. The immobilization method proposed by this study was found to effectively improve biomass retention in the reactors, which is promising for advanced anammox process applications. The developing approaches in the recovery of resources from biowastes for the production of renewable value-added products and fuels, using microbial cultures as bio-catalyst have now became promising aspect. In the path of anaerobic digestion, the microorganisms are assisting transformation of a complex organic feedstock/waste to biomass and biogas. This potentiality consequently leads to the production of intermediate precursors of renewable value-added products. Particularly, a set of anaerobic pathways in the fermentation process, yields small-chain fatty acids (SCFA), and medium-chain fatty acids (MCFA) via chain elongation pathways from waste valorization and CO2 fixation. This review focuses on the production of SCFA and MCFA from CO2, synthetic substrates and waste materials. Moreover, the review introduces the metabolic engineering of Escherichia coli and Saccharomyces cerevisiae for SCFAs/MCFAs production. Furtherly, it concludes that future critical research might target progress of this promising approach as a valorization of complex organic wastes. OBJECTIVE The treatment methodology as well as efficacy of stereotactic radiosurgery on numerous brain metastases has not been clearly established despite it being a primary modality for brain metastasis treatment. This study aimed to evaluate the efficacy of two-staged gamma knife radiosurgery (GKS) for patients with more than 10 metastatic lesions. PATIENTS AND METHODS Staged GKS was applied to 52 patients diagnosed with numerous metastases when a single radiosurgery was unbearable, or the exposed brain volume was excessive. Large clinically significant lesions in the eloquent area were treated in first GKS. The remainders were radiated in second GKS within a 4-week interval. The study evaluated three primary outcomes 1) the radiological response at second GKS and 3-month follow up, 2) treatment-related side effects, and 3) survival after staged GKS treatment. RESULTS Irradiated lesions of 17 (32.7 %) patients showed radiological response on MRI at second GKS. Lesions non-treated at first GKS progressed in tudy, two-staged GKS for numerous metastases seems to benefit the patients’ convenience and risk avoidance. Selected patients, especially with no other treatment options, can be candidates for this treatment protocol. INTRODUCTION Chagas disease, caused by the protozoan parasiteTrypanosoma cruzi, has no effective treatment available. On the other hand, microalgae are aquatic organisms that constitute an interesting reservoir of biologically active metabolites. Moreover, some species of green and red algae present anti-protozoan activity. Our aim was to study the antiparasitic effects of aqueous, methanolic and ethanolic extracts from different microalgae. METHODS AND RESULTS Our results show that the methanolic extracts of S. obliquus and T. suecica as well as the ethanolic extracts of C. reinhardtii and T. suecica present trypanocidal activity on the infective extracellular trypomastigotes and intracellular amastigotes. In addition, the ethanolic extract of C. reinhardtii potentiates the activity of the conventional antichagasic drug nifurtimox. In order to identify some potential compounds with trypanocidal activity, we performed a phytochemical screening analyzing the presence of phenolic compounds, pigments and terpenoids. CONCLUSION The different microalgae extracts, particularly the ethanolic extract ofC. reinhardtii, are promising potential candidates for the development of future natural antichagasic drugs. Keratinocyte proliferation serves as a crucial process in skin wound healing. The zinc-sensing G-protein coupled receptor 39 (GPR39), which is highly expressed in keratinocytes, has been shown to promote skin wound healing. The aim of this study was to investigate the effect of GPR39 activation on proliferation of keratinocytes and its underlying mechanism using immortalized human keratinocytes (HaCaT) as an in vitro model. GPR39 was functionally expressed in HaCaT cells. BrdU proliferation assays showed that treatment with GPR39 agonist TC-G 1008 (100 nM and 1 μM) increased cell proliferation. TC-G 1008 also enhanced ERK phosphorylation in time- and concentration-dependent manners. This effect was suppressed by co-treatment with wortmannin (PI3K inhibitor) and U0126 (MKK inhibitor). Of note, neither inhibition of Gαq-phospholipase C (PLC)-[Ca2+]i nor Gαs-PKA pathway affected GPR39 stimulation-induced ERK phosphorylation. Similarly, barbadin, an inhibitor of G-protein-independent β-arrestin pathway, did not suppress ERK phosphorylation induced by GPR39 activation. Of particular importance, wortmannin, U0126, and FR180204 (ERK inhibitor) abrogated the effect of TC-G 1008-induced cell proliferation. Taken together, this study reveals novel insights into the role of GPR39 in regulating keratinocyte proliferation via a PI3K-MKK-ERK-dependent mechanism. GPR39 agonists may be used in enhancing keratinocyte proliferation, which may be beneficial for the cutaneous wound treatment. BACKGROUND Heat stroke-induced mortality is rising across the globe. So, the design of prophylactic and/or therapeutic modalities for heat stroke is pressing need. The common plant derived flavonoid exhibits strong anti-oxidant and anti-inflammatory activities; however, its effects in heat stroke remain unknown. The study aimed to investigate the cardioprotective effects of myricetin on heat stroke induced acute myocardial injury as well as lethality in rats and to explore the underlying mechanisms. METHODS Myocardial injury was induced by subjecting the anesthetized rats to a high ambient temperature of 43 °C for 70 min. An intragastrical dose of myricetin (5-25 mg/kg body weight) was given to rats once per day for one week prior to the start of heat stress. Heat shock protein 72 antibodies was given intraperitoneally to rats 24 h before the start of heat stress. Myocardial injury severity was estimated by determing myocardial damage scores, myocardial injury indicators, myocardial oxidative and inflammatory factors. Western blot analysis was used for cardiac expression of heat shock protein (HSP)72. RESULTS Significant (P less then 0.05) up-regulation of HSP-72 after chronic administration of myricetin coincided with significant (P less then 0.05) reduction in hyperthermia, hypotension, cardiac inflammatory and oxidative damage and lethality. Inhibition of HSP-72 showed a significant (P less then 0.05) reversal in the cardiaprotection as well as survival. CONCLUSIONS Our results indicate that myricetin diminishes myocardial injury as well as lethality in heat stroke by up-regulating HSP-72 and show promise as a novel prevention therapeutic for heat stroke. Taxol is a cytotoxic agent against various types of cancers. The cytotoxic activities of Taxol can be extended to its synthesizing plant. Here, Taxol is shown to have special synthesis, storage and transport mechanisms that avoid the toxic effects on its source plant. The sites of Taxol biosynthesis, transport and storage were revealed by quantification of plant Taxol, its intermediate baccatin III, the polyphenol side chain precursor , gene expression analysis of the major Taxol biosynthetic genes and in situ immuno-labeling. Although the biosynthesis of Taxol was limited by the expression of its biosynthetic genes and the presence of baccatin III, its presence did not correlate to baccatin III accumulation, nor to the expression of biosynthetic genes. However, Taxol presence positively correlated to polyphenol accumulation (late stage in Taxol assembly) and the resin-like hydrophobic bodies (HB, storage organelles). These results indicate that the presence of Taxol requires two complementary steps, biosynthesis followed by storage. Each step is limited by the availability of different precursors, which differ in their localization within the plant. Thus, the sites of biosynthesis, transport and storage of Taxol are different. Taxus media (Rehder) plant wood showed high concentrations of baccatin III and the expression of biosynthetic genes. However, the concentrations of Taxol, polyphenol and HB were very high in the plant outer layers including phloem and dead bark (rhytidome). Furthermore, in situ immuno-labeling showed that taxadiene synthase (the rate-limiting enzyme in Taxol biosynthesis) was mainly found in the wood, while Taxol primarily localized to the outer tissues. Conclusively, wood can be considered as the site of Taxol biosynthesis. Our data also propose that Taxol then accumulates into HB in order to permit its transport within the living plant tissues without causing toxic effects. This is followed by Taxol storage in the outer tissues including phloem and dead bark. Psychiatrists are frequently exposed to work-related potential traumatic events (PTEs). A survey was sent to the members of the Dutch Society of Psychiatrists of which 250 questionnaires were eligible for analysis. At least one work-related PTE was reported by 196 (78.4%) of the respondents, of which 177 described the PTE. Witnessing or experiencing verbal aggression (29.2%), physical violence (29.2%) or completed suicide (26.8%) were the most common PTEs. This survey implies that psychiatrists frequently experience work-related PTEs, often with a significant emotional impact. The majority of respondents considered current support as insufficient. Spontaneous theory of mind (ToM) is an unconscious and automatic understanding of others’ mental states. Recently, individuals with attention-deficit hyperactivity disorder (ADHD) have been shown to have social and communication difficulties, and ToM in ADHD has come under scrutiny. Although some studies have employed explicit ToM tasks to this end with contradictory results, none, to our knowledge, has investigated spontaneous ToM in individuals with ADHD. Therefore, we performed this study to examine implicit mentalizing in adults with ADHD using the anticipatory-looking paradigm designed by Senju et al. (2009) with a sample of 24 adults with ADHD and 18 neurotypical adults. The total fixation times to three areas of interest, i.e., the actor and the false-belief congruent and incongruent sides of the scene were measured. We found that neither group showed looking bias toward either the false-belief congruent or incongruent side. We interpret that this similar gaze pattern and the absence of looking bias to the false-belief incongruent side in both groups is indicative of intact implicit ToM in adults with ADHD. Adults with ADHD looked significantly less at the actor than did neurotypical individuals, possibly due to inattention and further experimental modifications should be considered. The aim of this work was to study the redox-induced mobilization of Ag, Sb, Sn, and Tl in the dissolved, colloidal, and sediment phase of a mining soil treated and untreated with biochar as affected by the redox potential (EH) -dependent changes of soil pH, dissolved organic carbon, Fe, Mn and S. The experiment was conducted stepwise at two EH cycles (+200 mV → -30 mV → +333 mV → 0 mV) using biogeochemical microcosm. Silver was abundant in the colloidal fraction in both cycles, indicating that Ag might be associated with colloids under different redox conditions. Antimony, Sn and Tl were abundant in the colloidal fraction in the first cycle and in the dissolved fraction in the second cycle, which indicates that they are retained by colloids under oxic acidic conditions and released under reducing alkaline conditions. Release of dissolved Sb, Sn, and Tl was governed positively by pH, Fe, S, and dissolved aromatic compounds. Biochar mitigated Ag release, but promoted Sb, Sn, and Tl mobilization, which might be due to the wider range of EH (-12 to +333) and pH (4.9-8.1) in the biochar treated soil than the un-treated soil (EH = -30 to +218; pH = 5.9-8.6). Also, the biochar surface functional groups may act as electron donors for the Sb, Sn, and Tl reduction reactions, and thus biochar may play an important role in reducing Tl3+ to Tl+, Sb5+ to Sb3+, and Sn4+ to Sn2+, which increase their solubility under reducing conditions as compared to oxic conditions. Thallium and Sb exhibit higher potential mobility in the solid phase than Sn and Ag. Biochar increased the potential mobility of Sb, Sn, and Tl under oxic acidic conditions. The results improve our understanding of the redox-driven mobilization of these contaminants in soils. Commercial spray products are commonly used in daily life and airborne particles generated by these products may cause adverse health effects. Our study was aimed to characterize the behaviors of airborne particles from spray products and to determine the deposition loss rate. Four categories of spray products with highly frequent use – air fresheners, fabric deodorants, window cleaners, and a bathroom cleaner – were selected for the study. The products were applied in a cleanroom according to the instructions for use. Airborne particles (10-10,000 nm) were measured within the breathing zone of a user with a scanning mobility particle sizer and an optical particle spectrometer. Additionally, filter sampling was performed to examine the morphological characteristics of the particles using a field emission-scanning electron microscope (FE-SEM). The initial concentration and particle size distribution varied among different spray types and products. Two propellant-type air fresheners that we tested showed a high initial concentration of smaller sized particles. However, one of these and all hand-pressure type propellants showed a low initial concentration in all size ranges. We observed that particles in nucleation mode (10-31.6 nm) decreased and aggregated particles shifted to accumulation mode (100-1,000 nm) over time. The FS-SEM analysis confirmed the aggregation of nano-sized particles for all products. The deposition loss rates of various particle sizes depended on the initial concentration and distribution of particle sizes. For two air fresheners with high initial concentrations, the loss rate of small-sized particles was higher than that of the other products whereas the particle loss rate of large-sized particles was higher, regardless of initial concentration. The results of this study can give us useful information in the behaviors of airborne particles in the consumer spray products and resulting exposure assessment especially in the application to the exposure modeling of spray products. Denitrifying anaerobic methane oxidation (DAMO) is a vital methane sink in wetlands. However, the interactions and niche partitioning of DAMO bacteria and archaea in freshwater wetland soils, in addition to the interactions among microorganisms that couple methane and nitrogen cycling is still unclear, despite that these factors may govern the fate of methane and nitrogen in wetlands. Here, we evaluated the vertical distribution of DAMO bacteria and archaea in soil layers along with the potential interactions among populations in the methane-coupled nitrogen cycling microbial community of Tibetan freshwater wetlands. A combination of molecular biology, stable isotope tracer technology, and microbial bioinformatics was used to evaluate these interrelated dynamics. The abundances and potential methane oxidation rates indicated that DAMO bacteria and archaea differentially occupy surface and subsurface soil layers, respectively. The inferred interactions between DAMO bacteria and nitrogen cycling microorganisms within their communities are complex, DAMO bacteria apparently achieve an advantage in the highly competitive environment of surface soils layers and occupy a specific niche in those environments. Conversely, the apparent relationships between DAMO archaea and nitrogen cycling microorganisms are relatively simple, wherein high levels of cooperation are inferred between DAMO archaea and nitrate-producing organisms in subsurface soils layers. These results suggest that the vertical distribution patterns of DAMO bacteria and archaea enable them to play significant roles in the methane oxidation activity of different soil layers and collectively form an effective methane filtration consortium. Soil microbial communities play a central role in driving multiple ecosystem functions and ecological processes that are key to maintaining the plant productivity. However, we lack sound evidence for the linkage between soil microbial diversity and plant productivity, which hinders our ability to predict the consequences of microbial diversity loss for food security under the context of global environmental change. Here, we used the dilution-to-extinction approach to test the consequences of soil microbial diversity loss for the aboveground plant biomass in a glasshouse experiment. Compared with original soils, the bacterial alpha-diversity (Observed operational taxonomic units and Shannon index) significantly decreased in treatments with serially diluted inoculum. Principal coordinates analysis showed that the overall bacterial community compositions (beta-diversity) in original soils were clearly separated from the treatments with serially diluted inoculum. The aboveground biomass of lettuce harvested from the original soils was significantly higher than that from the sterilized soils regardless of the inoculation. The ordinary least squares regression model showed a significant linear relationship between the plant biomass and bacterial alpha-diversity, indicating that reduction in soil microbial diversity could result in a significant decline in the biomass of lettuce. No significant correlation was observed between plant biomass and soil processes including soil basal respiration and denitrification rates. Structural equation models suggested that the effects of soil microbial diversity on the plant biomass were maintained even when simultaneously accounting for other drivers (soil properties and biological processes). Our study provides experimental evidence that soil microbial diversity is important to the maintenance of the plant productivity and suggests that the functional redundancy in soil microbial communities may be overestimated especially in the agroecological system. For non-occupationally exposed adults, dietary intake is the main route of exposure to bisphenols (BPs), with canned foodstuffs playing a key role. This study was aimed at biomonitoring bisphenol A (BPA) and 5 more BP analogues (BPB, BPE, BPF, BPAF and BPZ) in spot urine and blood samples of a cohort of adults, who followed a diet based on a high consumption of canned food. To the best of our knowledge, this is the first study aimed at assessing the co-exposure of BP analogues in food and biological samples after a two-day duplicate diet study. The estimated total dietary exposure was 0.37 and 0.045 µg/kg body weight/day, for the canned-diet and control groups, respectively. BPA was the compound with the highest concentration in urine in comparison with the values of the remaining BP analogues. A high detection rate of BPA was noted in urine for both groups, 96% for the canned-diet group and 90% for the control group, while in blood it could be only quantified in 6% of the samples. The identification of other analogues was hardly related to diet, so it could be the result of other potential exposure sources, such as personal care products (PCPs) or air inhalation. After 2 days, the excretion of BPA was considerably higher in the canned-diet group subjects than those in the control group (7.02 vs. 1.89 µg/day), confirming that diet and canned foodstuffs are the main route of exposure to BPA. Anyhow, the temporary tolerable daily intake (t-TDI) established by the EFSA was not exceeded, even by those consumers with a diet rich in canned food. Moreover, spot urine samples provided accurate information about exposure and excretion of BPA, being the 4 h, instead of 24 h, the optimal sampling interval, when the collection of spot urine samples is not possible. Many studies have investigated the associations between household damp indicators, and allergies and respiratory diseases in childhood. However, the findings are rather inconsistent. In 2010, we conducted a cross-sectional study of preschoolers aged three-six years in three urban districts of Chongqing, China. In 2019, we repeated this cross-sectional study with preschoolers of the same ages and districts. Here, we selected data for 2935 and 2717 preschoolers who did not change residences since birth in the 2010 and 2019 studies, respectively. We investigated associations of household damp indicators with asthma, allergic rhinitis, pneumonia, eczema, wheeze, and rhinitis in childhood in the two studies. The proportions of residences with household damp indicators and the prevalence of the studied diseases (except for allergic rhinitis) were significantly lower in 2019 than in 2010. In the two-level (district-child) logistic regression analyses, household damp exposures that showed by different indicators were significantly associated with the increased odds of lifetime-ever asthma (range of adjusted odds ratio (AOR) 1.69-3.50 in 2019; 1.13-1.90 in 2010), allergic rhinitis (1.14-2.39; 0.67-1.61), pneumonia (1.09-1.64; 1.21-1.59), eczema (0.96-1.83; 0.99-1.56), wheeze (1.64-2.79; 1.18-1.91), rhinitis (1.43-2.71; 1.08-1.58), and current (in the past 12 months before the survey) eczema (0.46-2.08; 0.99-1.48), wheeze (0.97-2.86; 1.26-2.07) and rhinitis (1.34-2.25; 1.09-1.56) in most cases. The increased odds ratios (ORs) of most diseases had exposure-response relationships with the cumulative number (n) of household damp indicators in the current and early residences. Our results indicated household damp exposure could be a risk factor for childhood allergic and respiratory diseases, although the magnitudes of these effects could be different in different studies. INTRODUCTION Second-hand smoke exposure in the home is a serious cause of ill-health for children. Behaviour change interventions have been developed to encourage parents to keep homes smoke-free. This study evaluates a novel air quality feedback intervention using remote air quality monitoring with SMS and email messaging to promote smoke-free homes among families from deprived areas. METHODS This paper presents a pre-post study of this intervention. Using internet connected monitors developed with the Dylos DC1700, daily SMS and weekly email feedback provided for 16 days to participants recruited in four European countries. Participants were recruited based on their stage of change, in order to target those most able to achieve smoke-free homes. The primary outcome measure was median change in mean fine particulate matter (PM2.5) concentration between baseline and follow-up periods, while secondary outcome measures included change in time over the World Health Organisation (WHO) guideline limit for PM2.5 exposure over 24 h (25 µg/m3) in those periods and the number of homes where PM2.5 concentrations reduced. Telephone interviews were conducted with participants in Scotland post-intervention to explore intervention experience and perceived effectiveness. RESULTS Of 86 homes that completed the intervention study, 57 (66%) experienced pre-post reductions in measured PM2.5. The median reduction experienced was 4.1 µg/m3 (a reduction of 19% from baseline, p = 0.008). Eight homes where concentrations were higher than the WHO guideline limit at baseline fell below that level at follow-up. In follow-up interviews, participants expressed positive views on the usefulness of air quality feedback. DISCUSSION Household air quality monitoring with SMS and email feedback can lead to behaviour change and consequent reductions in SHS in homes, but within the context of our study few homes became totally smoke-free. Many „hot spot” geographic areas across the world with drinking water co-contaminated with inorganic arsenic (iAs) and fluoride (F-), two of the most common natural contaminants in drinking water. Both iAs and F- are known neurotoxins and affect neurodevelopment of children. However, very few studies have investigated the neurodevelopmental effects of concurrent exposure to iAs and F-, which could potentially pose a greater risk than iAs or F- exposure alone. Further, perturbations of gut microbiota, which plays a regulatory role in neurodevelopment, resulting from iAs and F- exposure has been reported in numerous studies. There is lacking of information regarding to the relationship among concurrent iAs and F- exposure, microbiome disruption, and neurodevelopmental impacts. To fill these gaps, we treated offspring rats to iAs (50 mg/L NaAsO2) and F- (100 mg/L NaF), alone or combined from early life (in utero and childhood) to puberty. We applied Morris water maze test to assess spatial learning and memory ofese results suggest that concurrent iAs and F- exposure led to more prominent effects on neurodevelopment and gut microbiome composition structures in rats, and the strong correlation between them indicates a high potential for the development of novel microbiome-based biomarkers of iAs and/or F- associated neurodevelopmental deficits. Substance abuse is commonly defined as the persistence of drug use despite negative consequences. Recent preclinical work has shown that higher input from the orbitofrontal cortex (OFC) to the dorsal striatum was associated with compulsive reward-seeking behavior despite negative effects. It remains unknown whether drug use is associated with the connectivity between the OFC and dorsal striatum in humans. We studied the resting state functional connectivity (RSFC) between the OFC, dorsal striatum, and habenula (and the whole brain in a separate analysis) in psychiatric inpatients with high (PU, problem users) and low (LU, low users) substance use. We matched PU and LU for psychiatric comorbidities. We found that PU showed higher RSFC between the left OFC and the left dorsal striatum than LU. RSFC between the habenula and both OFC and dorsal striatum was also higher in PU, which suggests the habenula may be a part of the same circuit. Finally, higher RSFC between the OFC and insula was also observed in PU. Our data shows that OFC, habenula, dorsal striatum, and insula may play an important role in PU. Furthermore, we postulate that the habenula may link the mesolimbic and cortico-striatal systems, which are altered in PU. Phthalates are among the most ubiquitous environmental contaminants and endocrine-disrupting chemicals. Exposure to phthalates and related health effects have been extensively studied over the past four decades. An association between phthalate exposure and allergic diseases has been suggested, although the literature is far from conclusive. This article reviews and evaluates epidemiological (n = 43), animal (n = 49), and cell culture studies (n = 42), published until the end of 2019, on phthalates and allergic diseases, such as asthma, rhinoconjunctivitis, and eczema. In contrast to earlier reviews, emphasis is placed on experimental studies that use concentrations with relevance for human exposure. Epidemiological studies provide support for associations between phthalate exposures and airway, nasal, ocular, and dermal allergic disease outcomes, although the reported significant associations tend to be weak and demonstrate inconsistencies for any given phthalate. Rodent studies support that phthalates may act as adjuvants at levels likely to be relevant for environmental exposures, inducing respiratory and inflammatory effects in the presence of an allergen. Cell culture studies demonstrate that phthalates may alter the functionality of innate and adaptive immune cells. However, due to limitations of the applied exposure methods and models in experimental studies, including the diversity of phthalates, exposure routes, and allergic diseases considered, the support provided to the epidemiological findings is fragmented. Nevertheless, the current evidence points in the direction of concern. Further research is warranted to identify the most critical windows of exposure, the importance of exposure pathways, interactions with social factors, and the effects of co-exposure to phthalates and other environmental contaminants. X chromosomal short tandem repeats (X-STRs) can be useful for haplotype analysis in DNA testing, particularly for complex kinship testing or when one parent is absent. We searched downstream of four previously detected loci in the Xp22.3 region (LC149476, LC149479, LC149480, and LC149484) and detected and analyzed three novel short tandem repeats (STRs), LC317283, LC317284, and LC317285, with the repeat sequences TATAA, TTTA, and TATC, respectively. The forensic statistical values in Japanese subjects were confirmed to be noninferior to existing loci, with values for polymorphism information content, the power of discrimination in males (PDm), and the power of discrimination in females (PDf) of 0.5606-0.7448, 0.6078-0.7774, and 0.7990-0.9178, respectively. Haplotype analysis also revealed linkage disequilibrium between LC317283 and the four known loci (LC149476, LC149479, LC149480, and LC149484) and between two other novel loci (LC317284 and LC317285). Analysis of three family samples suggested that these STRs could be useful in complex kinship testing, so we developed an X-STR multiplex polymerase chain reaction (PCR) system for the seven loci and confirmed its ability to provide favorable amplification. We anticipate that the identified loci and developed multiplex PCR system will be beneficial to the field of forensic medicine. With the growing demand for personalized medicine and medical devices, the impact of on-demand triggerable (e.g., via magnetic fields) drug delivery systems increased significantly in recent years. The three-dimensional (3D) printing technology has already been applied in the development of personalized dosage forms because of its high-precision and accurate manufacturing ability. In this study, a novel magnetically triggerable drug delivery device composed of a magnetic polydimethylsiloxane (PDMS) sponge cylinder and a 3D printed reservoir was designed, fabricated and characterized. This system can realize a switch between „on” and „off” state easily through the application of different magnetic fields and from different directions. Active and repeatable control of the localized drug release could be achieved by the utilization of magnetic fields to this device due to the shrinking extent of the macro-porous magnetic sponge inside. The switching „on” state of drug-releasing could be realized by the magnetic bar contacted with the side part of the device because the times at which 50%, 80% and 90% (w/w) of the drug were dissolved are observed to be 20, 55 and 140 min, respectively. In contrast, the switching „off” state of drug-releasing could be realized by the magnetic bar placed at the bottom of the device as only 10% (w/w) of the drug could be released within 12 h. An anti-cancer substance, 5-fluorouracil (FLU), was used as the model drug to illustrate the drug release behaviour of the device under different strengths of magnetic fields applied. In vitro cell culture studies also demonstrated that the stronger the magnetic field applied, the higher the drug release from the deformed PDMS sponge cylinder and thus more obvious inhibition effects on Trex cell growth. All results confirmed that the device can provide a safe, long-term, triggerable and reutilizable way for localized disease treatment such as cancer. Claw Horn Disruption Lesions (CHDL) negatively affect the sole soft tissue structures located beneath the sole horn. The aim of the present study was to investigate the effect of CHDL on sole soft tissues by ultrasound means, correlating Body condition score (BCS), locomotion score and CHDL with ultrasonography evaluations of sole soft tissues in Holstein dairy cows. 100 Holstein dairy cows were enrolled in the study. BCS and locomotion score were assessed and functional trimming was performed on all animals. 84 healthy claws and 174 claws with solely one CHDL per claw were evaluated both clinically and with ultrasound, and CHDL were identified and recorded. Sole soft tissues thickness (mm) and echogenicity was determined, and ultrasonographic alterations, related to CHDL presence, where measured long their vertical (L1) and horizontal (L2) axis. Statistically significant (P less then .001) differences were found in echogenicity between healthy claws and all the affected ones, with the healthy ones being mainly anechoic. Statistically significant (P less then .001) differences were found for vertical (L1) and horizontal (L2) axis measures between the diverse CHDL, confirming ultrasonography as a useful tool to distinguish lesions and their extension by measuring L1 and L2. BCS had an influence both on sole soft tissues ultrasonographic appearance and on CHDL insurgency. These results confirm ultrasonography as a reliable tool for detecting an increase in sole soft tissues echogenicity, that was seen to occur with CHDL insurgency, and in determining lesion extension. The study of structural and dynamical properties of lipid and its associated interaction with different components of bone is essential to understand its role at a different level of bone homeostasis such as bone mineralization and bone metabolism. In this article, we present water-dependent dynamical changes observed in lipids (triglycerides) in its absolute native environment inside bone by high-resolution 1H solid-state nuclear magnetic resonance spectroscopy (ssNMR). Relaxation measurement (T2 measurement) ssNMR experiments were performed at different levels of water network induced by dehydration and H/D exchange in native bone. Our measurements reflect the changes in the local environment and dynamical properties of triglyceride due to different hydration levels. The present study explains the role of water in stabilizing the structural properties of triglycerides in bone hence will help understand its pathological role associated with bone physiology and bone disorders. BACKGROUND Preceptorship is one model of supporting student nurses’ learning and development during their clinical education. However, little is known about what there is in preceptorship that promotes or hinders learning. Earlier studies found that there were ethical dimensions to students’ encounters with preceptors. AIM The overall purpose of this Nordic follow-up study was to develop a model for learning compassionate care among student nurses during their clinical education – first, to deeper understand the learning of student nurses, and second, to investigate the phenomenon of preceptorship from the preceptors´ point of view. METHOD This study used a mixed methods design. Undergraduate student nurses (n = 139) from three universities in Finland and Sweden were shadowed for a period of three years. Quantitative data were collected through a questionnaire and were analysed using statistical methods. To better understand the learning acquired by the student nurses, focus group interviews (n = 70) were conl nurse. The tyrosine kinase inhibitor (TKI) sorafenib continues to be the anchor drug in the treatment of advanced stage hepatocellular carcinoma (HCC). Other TKIs as well as immune checkpoint inhibitors (ICIs) have also been approved, however the response rates remain poor and heterogeneous among HCC patients, largely due to antitumor drug resistance. Studies aimed at identifying novel biomarkers and developing new strategies to improve the response to current treatment and to overcome drug resistance, are urgently needed. Germline or somatic mutations, neoantigens, and an immunotolerogenic state against constant inflammatory stimuli in the liver, are crucial for the anti-tumor response. A pharmacogenetic approach has been attempted considering germline polymorphisms in genes encoding for proteins involved in drug-targeted pathways. Single gene and comprehensive multi-gene somatic profiling approaches have been adopted in HCC to identify tumor sensitivity scores and immunogenic profiles that can be exploited for new biomarkers and innovative therapeutic approaches.


