-
Allison Hermann opublikował 1 rok, 3 miesiące temu
Changes in retinal microcirculation are associated with the development of diabetic retinopathy (DR). However, it is unclear whether such changes also develop in capillary beds of other non-retinal tissues. Here, we investigated microcirculatory changes involving velocity of rolling neutrophils, adherence of neutrophils, and leukostasis during development of retinal vascular lesions in diabetes in other non-retinal tissues. Intravital microscopy was performed on post-capillary venules of cremaster muscle and ear lobe of mice with severe or moderate diabetes and compared to those of non-diabetic mice. Additionally, number and velocity of rolling leukocytes, number of adherent leukocytes, and areas of leukostasis were quantified, and retinal capillary networks were examined for acellular capillaries (AC) and pericyte loss (PL), two prominent vascular lesions characteristic of DR. The number of adherent neutrophils and areas of leukostasis in the cremaster and ear lobe post-capillary venules of diabetic mice was increased compared to those of non-diabetic mice. Similarly, a significant increase in the number of rolling neutrophils and decrease in their rolling velocities compared to those of non-diabetic control mice were observed and severity of diabetes exacerbated these changes. Understanding diabetes-induced microcirculatory changes in cremaster and ear lobe may provide insight into retinal vascular lesion development in DR.Giant viruses are a group of eukaryotic double-stranded DNA viruses with large virion and genome size that challenged the traditional view of virus. Newly isolated strains and sequenced genomes in the last two decades have substantially advanced our knowledge of their host diversity, gene functions, and evolutionary history. Giant viruses are now known to infect hosts from all major supergroups in the eukaryotic tree of life, which predominantly comprises microbial organisms. The seven well-recognized viral clades (taxonomic families) have drastically different host range. Mimiviridae and Phycodnaviridae, both with notable intrafamilial genome variation and high abundance in environmental samples, have members that infect the most diverse eukaryotic lineages. Laboratory experiments and comparative genomics have shed light on the unprecedented functional potential of giant viruses, encoding proteins for genetic information flow, energy metabolism, synthesis of biomolecules, membrane transport, and sensing that allow for sophisticated control of intracellular conditions and cell-environment interactions. Evolutionary genomics can illuminate how current and past hosts shape viral gene repertoires, although it becomes more obscure with divergent sequences and deep phylogenies. Continued works to characterize giant viruses from marine and other environments will further contribute to our understanding of their host range, coding potential, and virus-host coevolution.Due to the wider use of nanocellulose in various areas of economic life, better and more optimal methods of obtaining nanocellulose are constantly being sought. Therefore, an attempt was made to evaluate the hybrid cellulose treatment, based on the use of a chemical method combined with an ultrasound of medium frequency. The study employs two different starting materials (Södra Black R cellulose or microcrystalline cellulose), two types of chemical pre-treatments (acid hydrolysis or oxidation), and two sonication durations. It was found that the reduction fiber cross-sectional dimensions was the result of prolonged exposure of cellulose to the ultrasound. From Södra Black R and the microcrystalline cellulose nanometer scale, structures were obtained in the form of isolated fibers. The TEMPO reagent accelerated the degradation process of two cellulose varieties due to its oxidizing character. The resulting products had nanofibrous structures. Cellulose degradation as a result of the combined action of sonication and TEMPO activity progressed gradually. Places of fiber degradation were characterized by their longitudinal breakage and initiated the next stages of the defibering process.Finding fulfillment of basic psychological needs may be difficult for parents living in shelters after becoming homeless or after escaping violence. This study tested if experiencing nature was associated with the basic psychological needs of parents in shelters. Need satisfaction and need frustration were measured among parents in shelters (N = 160), with one measurement in the standard indoor context of the shelter and one measurement while experiencing nature. Experiencing nature was associated with enhanced need satisfaction (d = 0.28) and reduced need frustration (d = -0.24). The effect was especially pronounced for parents with young children. Our findings suggest that the physical environment matters for parents’ basic psychological need fulfillment as they interact with their children in the context of sheltering. This finding opens a potential avenue for supporting parental functioning and resilience in the face of risk if these effects were to be replicated across settings using controlled experimental designs. At the very least, the findings may be discussed with practitioners and parents in the context of making shelter life and work more conducive to mental health and family functioning.Nowadays, propolis is used as a highly valuable product in alternative medicine for improving health or treating a large spectrum of pathologies, an ingredient in pharmaceutical products, and also as a food additive. Different vegetal materials are collected by honeybees and mixed with wax and other own substances in order to obtain the final product, called propolis. It is known as the bee product with the widest chemical composition due to the raw material collected by the bees. Different types are known worldwide green Brazilian propolis (having Baccharis dracunculifolia as the major plant source), red Brazilian propolis (from Dalbergia ecastophyllum), European propolis (Populus nigra L.), Russian propolis (Betula verrucosa Ehrh), Cuban and Venezuelan red propolis (Clusia spp.), etc. An impressive number of scientific papers already demonstrate the pharmacological potential of different types of propolis, the most important activities being the antimicrobial, anti-inflammatory, antitumor, immunomodulatory, and antioxidant activities. However, the bioactive compounds responsible for each activity have not been fully elucidated. This review aims to collect important data about the chemical composition and bioactive properties of the vegetal sources and to compare with the chemical composition of respective propolis types, in order to determine the connection between the floral source and the propolis properties.Air-liquid interface (ALI) culture of nasal epithelial cells is a valuable tool in the diagnosis and research of primary ciliary dyskinesia (PCD). Ex vivo samples often display secondary dyskinesia from cell damage during sampling, infection or inflammation confounding PCD diagnostic results. ALI culture enables regeneration of healthy cilia facilitating differentiation of primary from secondary ciliary dyskinesia. We describe a revised ALI culture method adopted from April 2018 across three collaborating PCD diagnostic sites, including current University Hospital Southampton COVID-19 risk mitigation measures, and present results. Two hundred and forty nasal epithelial cell samples were seeded for ALI culture and 199 (82.9%) were ciliated. Fifty-four of 83 (63.9%) ex vivo samples which were originally equivocal or insufficient provided diagnostic information following in vitro culture. Surplus basal epithelial cells from 181 nasal brushing samples were frozen in liquid nitrogen; 39 samples were ALI-cultured after cryostorage and all ciliated. The ciliary beat patterns of ex vivo samples (by high-speed video microscopy) were recapitulated, scanning electron microscopy demonstrated excellent ciliation, and cilia could be immuno-fluorescently labelled (anti-alpha-tubulin and anti-RSPH4a) in representative cases that were ALI-cultured after cryostorage. In summary, our ALI culture protocol provides high ciliation rates across three centres, minimising patient recall for repeat brushing biopsies and improving diagnostic certainty. Cryostorage of surplus diagnostic samples was successful, facilitating PCD research.Periodontal examination data have a complex structure. For epidemiological studies, mass screenings, and public health use, a simple index that represents the periodontal condition is necessary. Periodontal indices for partial examination of selected teeth have been developed. However, the selected teeth vary between indices, and a justification for the selection of examination teeth has not been presented. We applied a graded response model based on the item response theory to select optimal examination teeth and sites that represent periodontal conditions. Data were obtained from 254 patients who participated in a multicenter follow-up study. Baseline data were obtained from initial follow-up. Optimal examination sites were selected using item information calculated by graded response modeling. Twelve sites-maxillary 2nd premolar (palatal-medial), 1st premolar (palatal-distal), canine (palatal-medial), lateral incisor (palatal-central), central incisor (palatal-distal) and mandibular 1st premolar (lingual, medial)-were selected. Mean values for clinical attachment level, probing pocket depth, and bleeding on probing by full mouth examinations were used for objective variables. Measuring the clinical parameters of these sites can predict the results of full mouth examination. For calculating the periodontal index by partial oral examination, a justification for the selection of examination sites is essential. This study presents an evidence-based partial examination methodology and its modeling.The sooner disruptive emergent behaviors are detected, the sooner preventive measures can be taken to ensure the resilience of business processes execution. Therefore, organizations need to prepare for emergent behaviors by embedding corrective control mechanisms, which help coordinate organization-wide behavior (and goals) with the behavior of local autonomous entities. Ongoing technological advances, brought by the Industry 4.0 and cyber-physical systems of systems paradigms, can support integration within complex enterprises, such as supply chains. In this paper, we propose a reference enterprise architecture for the detection and monitoring of emergent behaviors in enterprises. We focus on addressing the need for an adequate reaction to disruptions. Based on a systematic review of the literature on the topic of current architectural designs for understanding emergent behaviors, we distill architectural requirements. Our architecture is a hybrid as it combines distributed autonomous business logic (expressed in terms of simple business rules) and some central control mechanisms. We exemplify the instantiation and use of this architecture by means of a proof-of-concept implementation, using a multimodal logistics case study. The obtained results provide a basis for achieving supply chain resilience „by design”, i.e., through the design of coordination mechanisms that are well equipped to absorb and compensate for the effects of emergent disruptive behaviors.


