• Boswell Mathews opublikował 1 rok, 3 miesiące temu

    Background Timely diagnosis of dementia is a policy priority in the United Kingdom (UK). Primary care physicians receive incentives to diagnose dementia; however, 33% of patients are still not receiving a diagnosis. We explored automating early detection of dementia using data from patients’ electronic health records (EHRs). We investigated a) how early a machine-learning model could accurately identify dementia before the physician; b) if models could be tuned for dementia subtype; and c) what the best clinical features were for achieving detection. Methods Using EHRs from Clinical Practice Research Datalink in a case-control design, we selected patients aged >65y with a diagnosis of dementia recorded 2000-2012 (cases) and matched them 11 to controls; we also identified subsets of Alzheimer’s and vascular dementia patients. Using 77 coded concepts recorded in the 5 years before diagnosis, we trained random forest classifiers, and evaluated models using Area Under the Receiver Operating Characteristic Curve (s that the GP would need to investigate.Among the most critical strategies in the fight against the Corona Virus Disease (COVID-19) is the rapid tracing and notification of potentially infected persons. Several nations have implemented mobile software applications („apps”) to alert persons exposed to the coronavirus. The expected advantages of this new technology over the traditional method of contact tracing include speed, specificity, and mass reach. Beyond its use for mitigating and containing COVID-19, digital technology can complement or even augment the traditional approach to global health program implementation. However, as with any new system, strong regulatory frameworks are necessary to ensure that individual information is not used for surveillance purposes, and user privacy will be maintained. Having safeguarded this, perhaps the global health community will witness the beginning of a new era of implementing mass health programs through the medium of digital technology.

    Kenya has the fourth-largest HIV epidemic across the globe. Disclosure of HIV-positive status plays a critical role in the prevention of HIV transmission. Disclosure, specifically to sexual partners, has been shown to foster safer sexual behaviors in addition to emotional, social, or monetary support from partners.

    This study was conducted to identify factors associated with HIV-positive status disclosure to sexual partners compared to disclosure to other than sexual partners.

    A cross-sectional study was conducted from May to August 2012 among 497 HIV-positive women 19-49 years of age who had sex in the past six months. Participants were recruited from the Kenyatta National Hospital and Mbagathi Direct Hospital in Nairobi, Kenya. A questionnaire was administered to obtain data on HIV disclosure. Bivariate and multivariable logistic regression analyses were conducted to identify factors associated with disclosure of HIV-positive status to sexual partners.

    Of the 497 women, 349 reported to whom they had to sexual partners and identified a number of factors associated with disclosure to sexual partners. These findings can be used in designing interventions that focus on individuals who have not disclosed their HIV-positive status to their sexual partners by demonstrating the importance of disclosure and safe sex practices.

    The analgesic effects of transcranial Direct Current Stimulation (tDCS) combined with physical therapy remain unclear.

    To systematically review available evidence comparing tDCS with any physical therapy modality (PTM) to PTM alone or PTM with sham tDCS on pain relief on common musculoskeletal (MSK) conditions, namely knee osteoarthritis (KOA), chronic low back pain (CLBP), myofascial pain syndrome (MPS) and fibromyalgia.

    EMBASE and MEDLINE were searched from inception to April 2019 for randomized controlled trials. Reviewers independently assessed the studies quality and extracted data according to the PRISMA protocol. The GRADE approach was used to asses quality of evidence and a „Summary of Findings” table was created. The analyses used random-effects model. The primary outcome was pain reduction after treatment.

    Eight articles were included. Only one study had low risk of bias. Quality of evidence was considered low or very low. Significant reduction in pain scores were found for fibromyalgia and KOA (Standardized mean difference (SMD) = -1.94 [95% CI -3.37 to -0.49;

    =76.4%] and SMD = -2.35 [95% CI -3.63 to -1.06;

    =69.7%] respectively). Subgroup analysis considering the type of PTM despite MSK condition revealed significant reduction in pain scores for exercise, SMD = -1.20 [95% CI -1.683 to -0.717;

    =10.8%].

    Large heterogeneity and low quality of evidence and limited number of studies were found. Results suggest a potential analgesic effect of tDCS in combination with a PTM for fibromyalgia and KOA. Subgroup analysis suggests a stronger effect of tDCS when combined with an exercise based PTM.

    Large heterogeneity and low quality of evidence and limited number of studies were found. Results suggest a potential analgesic effect of tDCS in combination with a PTM for fibromyalgia and KOA. Subgroup analysis suggests a stronger effect of tDCS when combined with an exercise based PTM.As the leading cause of trauma-related mortality, blood loss due to hemorrhage is notoriously difficult to triage and manage. To enable timely and appropriate care for patients with trauma, this work elucidates the externally measurable physiological features of exsanguination, which were used to develop a globalized model for assessing blood volume status (BVS) or the relative severity of blood loss. These features were captured via both a multimodal wearable system and a catheter-based reference and used to accurately infer BVS in a porcine model of hemorrhage (n = 6). Ultimately, high-level features of cardiomechanical function were shown to strongly predict progression toward cardiovascular collapse and used to estimate BVS with a median error of 15.17 and 18.17% for the catheter-based and wearable systems, respectively. Exploring the nexus of biomedical theory and practice, these findings lay the groundwork for digital biomarkers of hemorrhage severity and warrant further study in human subjects.Chagas disease (CD) is a parasitic disease caused by Trypanosoma cruzi protozoa, presenting with cardiomyopathy, megaesophagus, and/or megacolon. To determine the mechanisms of gastrointestinal (GI) CD tissue tropism, we systematically characterized the spatial localization of infection-induced metabolic and microbiome alterations, in a mouse model of CD. Notably, the impact of the transition between acute and persistent infection differed between tissue sites, with sustained large-scale effects of infection in the esophagus and large intestine, providing a potential mechanism for the tropism of CD within the GI tract. Infection affected acylcarnitine metabolism; carnitine supplementation prevented acute-stage CD mortality without affecting parasite burden by mitigating infection-induced metabolic disturbances and reducing cardiac strain. Overall, results identified a previously-unknown mechanism of disease tolerance in CD, with potential for new therapeutic regimen development. More broadly, results highlight the potential of spatially resolved metabolomics to provide insight into disease pathogenesis and infectious disease drug development.Despite advances in hematopoietic stem/progenitor cell (HSPC) transplant for HIV-1-infected patients, the impact of a preexisting HIV-1 infection on the engraftment and clonal repopulation of HSPCs remains poorly understood. We have developed a long terminal repeat indexing-mediated integration site sequencing (LTRi-Seq) method that provides a multiplexed clonal quantitation of both anti-HIV-1 RNAi (RNA interference) gene-modified and control vector-modified cell populations, together with HIV-1-infected cells-all within the same animal. In our HIV-1-preinfected humanized mice, both therapeutic and control HSPCs repopulated efficiently without abnormalities. Although the HIV-1-mediated selection of anti-HIV-1 RNAi-modified clones was evident in HIV-1-infected mice, the organ-to-organ and intra-organ clonal distributions in infected mice were indistinguishable from those in uninfected mice. HIV-1-infected cells showed clonal patterns distinct from those of HSPCs. Our data demonstrate that, despite the substantial impact of HIV-1 infection on CD4+ T cells, HSPC repopulation remains polyclonal, thus supporting the use of HSPC transplant for anti-HIV treatment.Formation of bacterial biofilms on solid surfaces within a fluid starts when bacteria attach to the substrate. Understanding environmental factors affecting the attachment and the early stages of the biofilm development will help develop methods of controlling the biofilm growth. Here, we show that biofilm formation is strongly affected by the flows in thin layers of bacterial suspensions controlled by surface waves. Deterministic wave patterns promote the growth of patterned biofilms, while wave-driven turbulent motion discourages patterned attachment of bacteria. Strong biofilms form under the wave antinodes, while inactive bacteria and passive particles settle under nodal points. By controlling the wavelength, its amplitude, and horizontal mobility of the wave patterns, one can shape the biofilm and either enhance the growth or discourage the formation of the biofilm. The results suggest that the deterministic wave-driven transport channels, rather than hydrodynamic forces acting on microorganisms, determine the preferred location for the bacterial attachment.The treatment difficulties of venous thrombosis include short half-life, low utilization, and poor penetration of drugs at thrombus site. Here, we develop one kind of mesoporous/macroporous silica/platinum nanomotors with platelet membrane (PM) modification (MMNM/PM) for sequentially targeting delivery of thrombolytic and anticoagulant drugs for thrombus treatment. Regulated by the special proteins on PM, the nanomotors target the thrombus site and then PM can be ruptured under near-infrared (NIR) irradiation to achieve desirable sequential drug release, including rapid release of thrombolytic urokinase (3 hours) and slow release of anticoagulant heparin (>20 days). Meantime, the motion ability of nanomotors under NIR irradiation can effectively promote them to penetrate deeply in thrombus site to enhance retention ratio. The in vitro and in vivo evaluation results confirm that the synergistic effect of targeting ability from PM and motion ability from nanomotors can notably enhance the thrombolysis effect in both static/dynamic thrombus and rat model.Electron paramagnetic resonance (EPR) spectroscopy is among the most important analytical tools in physics, chemistry, and biology. The emergence of nitrogen-vacancy (NV) centers in diamond, serving as an atomic-sized magnetometer, has promoted this technique to single-spin level, even under ambient conditions. Despite the enormous progress in spatial resolution, the current megahertz spectral resolution is still insufficient to resolve key heterogeneous molecular information. A major challenge is the short coherence times of the sample electron spins. Here, we address this challenge by using a magnetic noise-insensitive transition between states of different symmetry. We demonstrate a 27-fold narrower spectrum of single substitutional nitrogen (P1) centers in diamond with a linewidth of several kilohertz, and then some weak couplings can be resolved. Those results show both spatial and spectral advances of NV center-based EPR and provide a route toward analytical (EPR) spectroscopy at the single-molecule level.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0