-
McCarthy Washington opublikował 1 rok, 3 miesiące temu
The actual fluid form of an electrolyte in a molecular electronic converter is an important factor that causes a decrease in the accuracy of a molecular electronic transducer (MET) liquid motion sensor. To study the actual fluid morphology of an inertial electrolyte in molecular electron transducers, an inlet effect is defined according to the fluid morphology of turbulent-laminar flow, and a numerical simulation model of turbulent-laminar flow is proposed. Based on the turbulent-laminar flow model, this paper studies the variation of the inlet effect intensity when the thickness of the outermost insulating layer is 50 µm and 100 µm, respectively. Meanwhile, the changes of the inlet effect intensity and the error rate of central axial velocity field are also analyzed when the input signal intensity is different. Through the numerical experiment, it verifies that the thickness of the outermost insulating layer and the amplitude of the input signal are two important factors which can affect the inlet effect intensity and also the accuracy of the MET. Therefore, this study can provide a theoretical basis for the quantitative study on the performance optimization of a MET liquid sensor.A cadaver is colonized by a wide diversity of necrophagous insects. It is well documented that Dipterans are attracted by the volatile organic compounds (VOCs) released by a corpse during the first minutes following death. Coleopterans are known to be attracted by highly decomposed cadavers, but have received less attention regarding the olfaction-based mechanisms underlying these interactions. In the present study, we impregnated gauzes with VOCs collected from each decomposition stage of dead rats fresh, bloated, active, and advanced decay. We collected the VOCs released by the gauze and confirmed what was previously know from the literature the decomposition stages are associated with contrasting chemical profiles. We exposed Dermestes frischii Kugelann (Coleoptera Dermestidae) male and female antennae to the same gauzes and found that stronger electrical responses were recorded when using the smell of the advanced decay stage. Finally, we performed two choices behavioral assays. Females showed no preference for the four decomposition stages, while males were attracted by the smell associated with active and advanced decay stages. These results suggest that specific VOCs released by a decaying body guide necrophagous coleopterans to their feeding site. Whether D. frischii males release pheromones to attract females remains to be tested.In the past centuries, viruses have benefited from globalization to spread across the globe, infecting new host species and populations. A growing number of viruses have been documented in the western honey bee, Apis mellifera. Several of these contribute significantly to honey bee colony losses. This review synthetizes the knowledge of the diversity and distribution of honey-bee-infecting viruses, including recent data from high-throughput sequencing (HTS). After presenting the diversity of viruses and their corresponding symptoms, we surveyed the scientific literature for the prevalence of these pathogens across the globe. The geographical distribution shows that the most prevalent viruses (deformed wing virus, sacbrood virus, black queen cell virus and acute paralysis complex) are also the most widely distributed. We discuss the ecological drivers that influence the distribution of these pathogens in worldwide honey bee populations. Besides the natural transmission routes and the resulting temporal dynamics, global trade contributes to their dissemination. As recent evidence shows that these viruses are often multihost pathogens, their spread is a risk for both the beekeeping industry and the pollination services provided by managed and wild pollinators.Respiratory syncytial virus (RSV) is the leading cause of lower respiratory infections in infants and young children, accounting for an estimated 3 million hospitalizations annually worldwide. Despite the major health burden, there is currently no licensed RSV vaccine. RSV is recognized by a range of cellular receptors including both toll-like receptors (TLR) and retinoic acid-inducible gene-I-like receptors (RIG-I). This interaction initiates signaling through mitochondrial antiviral signaling (MAVS) and interferon regulatory factor (IRF) proteins, resulting in the induction of type I interferons (IFN). Early viral control is mediated by either IFN-α or IFN-β signaling through the IFN receptor (IFNAR), inducing the production of antiviral interferon-stimulating genes (ISGs). Type I IFNs also initiate the early production of proinflammatory cytokines including interleukin 6 (IL-6), tumor necrosis factor (TNF), and IFN-γ. Type I IFN levels correlate with age, and inadequate production may be a critical factor in facilitating the increased RSV disease severity observed in infants. Here, we review the current literature on the function of type I IFNs in RSV pathogenesis, as well as their involvement in the differential immune responses observed in infants and adults.Arsenic trioxide (ATO; As2O3) has anti-cancer effects in various solid tumors as well as hematological malignancy. Valproic acid (VPA), which is known to be a histone deacetylase inhibitor, has also anti-cancer properties in several cancer cells including lung cancer cells. Combined treatment of ATO and VPA (ATO/VPA) could synergistically enhance anti-cancer effects and reduce ATO toxicity ATO. In this study, the combined anti-cancer effects of ATO and VPA (ATO/VPA) was investigated in NCI-H460 and NCI-H1299 lung cancer cells in vitro and in vivo. A combination of 3 μM ATO and 3 mM VPA (ATO/VPA) strongly inhibited the growths of both lung cancer cell types. DNA flow cytometry indicated that ATO/VPA significantly induced G2/M-phase arrest in both cell lines. In addition, ATO/VPA strongly increased the percentages of sub-G1 cells and annexin V-FITC positive cells in both cells. However, lactate dehydrogenase (LDH) release from cells was not increased in ATO/VPA-treated cells. In addition, ATO/VPA increased apoptosis in both cell types, accompanied by loss of mitochondrial membrane potential (MMP, ∆Ψm), activation of caspases, and cleavage of anti-poly ADP ribose polymerase-1. Moreover, a pan-caspase inhibitor, Z-VAD, significantly reduced apoptotic cell death induced by ATO/VPA. In the xenograft model, ATO/VPA synergistically inhibited growth of NCI-H460-derived xenograft tumors. In conclusion, the combination of ATO/VPA effectively inhibited the growth of lung cancer cells through G2/M-phase arrest and apoptotic cell death, and had a synergistic antitumor effect in vivo.Sweet potato virus disease (SPVD) is the most devastating viral disease in sweet potato (Ipomoea batatas (L.) Lam.), causing substantial yield losses worldwide. We conducted a systemic investigation on the spread, transmission, and pathogenesis of SPVD. Field experiments conducted over two years on ten sweet potato varieties showed that SPVD symptoms first occurred in newly developed top leaves, and spread from adjacent to distant plants in the field. The SPVD incidence was mainly (but not only) determined by the resistance of the varieties planted, and each variety exhibited a characteristic subset of SPVD symptoms. SPVD was not robustly transmitted through friction inoculation, but friction of the main stem might contribute to a higher SPVD incidence rate compared to friction of the leaf and branch tissues. Furthermore, our results suggested that SPVD might be latent in the storage root. Therefore, using virus-free storage roots and cuttings, purposeful monitoring for SPVD according to variety-specific symptoms, and swiftly removing infected plants (especially during the later growth stages) would help control and prevent SPVD during sweet potato production. Comparative transcriptome analysis revealed that numerous genes involved in photosynthesis, starch and sucrose metabolism, flavonoid biosynthesis, and carotenoid biosynthesis were downregulated following SPVD, whereas those involved in monolignol biosynthesis, zeatin biosynthesis, trehalose metabolism, and linoleic acid metabolism were upregulated. Notably, critical genes involved in pathogenesis and plant defense were significantly induced or suppressed following SPVD. These data provide insights into the molecular changes of sweet potato in response to SPVD and elucidate potential SPVD pathogenesis and defense mechanisms in sweet potato. Our study provides important information that can be used to tailor sustainable SPVD control strategies and guide the molecular breeding of SPVD-resistant sweet potato varieties.Roles of internal salicylate donors (SID) in enhancing activity and stereoselectivity of Ziegler-Natta catalyzed propylene (PP) polymerization were examined using DFT calculations. Five salicylate donors were studied. The chelate mode is the preferred adsorption mode. The linear relationship (R2 = 0.96) between calculated adsorption energies (Eads) of five SIDs and the experimental PP activities was observed. Thus, the SID with the strongest adsorption energy will provide the highest activity in agreement with our previous studies. Compared with diisobutyl phthalate (DIBP), which is the industrial electron donor, SID has stronger Eads. The insertion step, which involves the π-complex formation (∆Eπ and the insertion activation or intrinsic activation energy (Ea) for PP polymerization was also examined. The relation between ln(activity) and apparent activation energy (Ea(app)), which is ∆Eπ + Ea for the primary(1,2)-re insertion with R2 = 0.99, was observed. The salicylate donor also has a lower Ea(app) than that of DIBP. This explains the better catalytic performance of SID. Our results also demonstrated that the size and the type of hydrocarbon substituents play a key role in controlling stereoselectivity and activity. In addition, we found a good relationship between Eads and both intrinsic (Ea) and apparent (Ea(app)) activation energies of five salicylate donors with R2 of 0.90 and 0.97, respectively.We present a structural and dynamic study on the simplest supramolecular hetero-association, recently investigated by the authors to prepare architectural homogeneous structures in the melt state, based on the bio-inspired hydrogen-bonding of thymine/diaminotriazine (thy-DAT) base-pairs. In the combination with an amorphous low Tg poly(butylene oxide) (PBO), no micellar structures are formed, which is expected for nonpolar polymers because of noncompatibility with the highly polar supramolecular groups. Instead, a clear polymer-like transient architecture is retrieved. This makes the heterocomplementary thy-DAT association an ideal candidate for further exploitation of the hydrogen-bonding ability in the bulk for self-healing purposes, damage management in rubbers or even the development of easily processable branched polymers with built-in plasticizer. In the present work, we investigate the temperature range from Tg + 20 °C to Tg + 150 °C of an oligomeric PBO using small-angle X-ray scattering (SAXS) and linear rheology on the pure thy and pure DAT monofunctionals and on an equimolar mixture of thy/DAT oligomers. The linear rheology performed at low temperature is found to correspond to fully closed-state dimeric configurations. At intermediate temperatures, SAXS probes the equilibrium between open and closed states of the thy-DAT mixtures. The temperature-dependent association constant in the full range between open and closed H-bonds and an enhancement of the monomeric friction coefficient due to the groups is obtained. The thy-DAT association in the melt is more stable than the DAT-DAT, whereas the thy-thy association seems to involve additional long-lived interactions.The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.To reduce the burden of chronic disease, the Centers for Disease Control and Prevention (CDC) funded the Orange County Partnerships to Improve Health (OC-PICH) project in Orange County, California. One of the strategies included adding outdoor exercise equipment (OEE) in two parks in Garden Grove and Anaheim. Using a quasi-experimental pre-post design, we evaluated park users’ physical activity levels before and after OEE installation using the System for Observing Play and Recreation in Communities (SOPARC). The OEE was installed along a walking path in Edison Park (Anaheim) and grouped within a single area (a „fitness zone”) in Garden Grove Park. In both parks, there were significantly greater odds of high-intensity physical activity overall after the installation-19% higher odds in Anaheim, and 23% higher odds in Garden Grove. However, the fitness zone area in Garden Grove had substantially higher odds of increased physical activity post-intervention (OR = 5.29, CI 3.76-7.44, p less then 0.001). While the increases in physical activity levels are consistent with past studies that link OEE to higher levels of physical activity among park users, our findings also suggest that the location and placement of equipment within a park may be an important factor to consider when improving park amenities for physical activity.On-chip cell culture devices have been actively developed for both mammalian cells and bacteria. Most designs are based on PDMS multi-layer microfluidic valves, which require complicated fabrication and operation. In this work, single-layer PDMS microfluidic valves are introduced in the design of an on-chip culture chamber for E. coli bacteria. To enable the constant flow of culturing medium, we have developed a (semi-)always-closed single-layer microfluidic valve. As a result, the growth chamber can culture bacteria over long duration. The device is applied for the whole-cell detection of heavy metal ions with genetically modified E. coli. The platform is tested with culturing period of 3 h. It is found to achieve a limit-of-detection (LoD) of 44.8 ppb for Cadmium ions.Fertilization is a multiple step process leading to the fusion of female and male gametes and the formation of a zygote. Besides direct gamete membrane interaction via binding receptors localized on both oocyte and sperm surface, fertilization also involves gamete communication via chemical molecules triggering various signaling pathways. This work focuses on a mouse taste receptor, mTAS1R3, encoded by the Tas1r3 gene, as a potential receptor mediating chemical communication between gametes using the C57BL/6J lab mouse strain. In order to specify the role of mTAS1R3, we aimed to characterize its precise localization in testis and sperm using super resolution microscopy. The testis cryo-section, acrosome-intact sperm released from cauda epididymis and sperm which underwent the acrosome reaction (AR) were evaluated. The mTAS1R3 receptor was detected in late spermatids where the acrosome was being formed and in the acrosomal cap of acrosome intact sperm. AR is triggered in mice during sperm maturation in the female reproductive tract and by passing through the egg surroundings such as cumulus oophorus cells. This AR onset is independent of the extracellular matrix of the oocyte called zona pellucida. After AR, the relocation of mTAS1R3 to the equatorial segment was observed and the receptor remained exposed to the outer surroundings of the female reproductive tract, where its physiological ligand, the amino acid L-glutamate, naturally occurs. Therefore, we targeted the possible interaction in vitro between the mTAS1R3 and L-glutamate as a part of chemical communication between sperm and egg and used an anti-mTAS1R3-specific antibody to block it. We detected that the acrosome reacted spermatozoa showed a chemotactic response in the presence of L-glutamate during and after the AR, and it is likely that mTAS1R3 acted as its mediator.Herein, the effects of changes in acoustic and non-acoustic factors on public health and reactions were assessed using two follow-up investigations; this was achieved after three surveys were conducted on the impact of the step change in noise caused by the increased number of flights at the Noi Bai International Airport in Hanoi (Vietnam) after the new terminal building was opened to the public. Exposure-response relationships established in the follow-up studies were less in number than those established in 2015 after the step change had occurred, and were almost similar to the relationship established in the survey conducted before the step change; however, these relationships were significantly greater than those established in the European Union position paper. Comparisons between respondents with high blood pressure and insomnia ratios at different noise level ranges showed that there is no significant association between ratios of high blood pressure and day-evening-night noise levels; however, an exposure-response relationship was discovered between insomnia and night-time noise levels. Non-acoustic factors such as noise sensitivity, sound insulation capacity of houses, and length of residence were found to curb the respondents’ annoyance, insomnia, and high blood pressure. Thus, an improvement in residence quality and a restriction on nighttime flight operation is necessitated.The management of livestock in extensive production systems may be challenging, especially in large areas. Using Unmanned Aerial Vehicles (UAVs) to collect images from the area of interest is quickly becoming a viable alternative, but suitable algorithms for extraction of relevant information from the images are still rare. This article proposes a method for counting cattle which combines a deep learning model for rough animal location, color space manipulation to increase contrast between animals and background, mathematical morphology to isolate the animals and infer the number of individuals in clustered groups, and image matching to take into account image overlap. Using Nelore and Canchim breeds as a case study, the proposed approach yields accuracies over 90% under a wide variety of conditions and backgrounds.Biosensor platforms consisting of layer by layer films combining materials with different functionalities have been developed and used to obtain improved catechol biosensors. Tyrosinase (Tyr) or laccase (Lac) were deposited onto LbL films formed by layers of a cationic linker (chitosan, CHI) alternating with layers of anionic electrocatalytic materials (sulfonated copper phthalocyanine, CuPcS or gold nanoparticles, AuNP). Films with different layer structures were successfully formed. Characterization of surface roughness and porosity was carried out using AFM. Electrochemical responses towards catechol showed that the LbL composites efficiently improved the electron transfer path between Tyr or Lac and the electrode surface, producing an increase in the intensity over the response in the absence of the LbL platform. LbL structures with higher roughness and pore size facilitated the diffusion of catechol, resulting in lower LODs. The [(CHI)-(AuNP)-(CHI)-(CuPcS)]2-Tyr showed an LOD of 8.55∙10-4 μM, which was one order of magnitude lower than the 9.55·10-3 µM obtained with [(CHI)-(CuPcS)-(CHI)-(AuNP)]2-Tyr, and two orders of magnitude lower than the obtained with other nanostructured platforms. It can be concluded that the combination of adequate materials with complementary activity and the control of the structure of the platform is an excellent strategy to obtain biosensors with improved performances.Pompe disease is an autosomal recessive lysosomal storage disorder (LSD) caused by deficiency of lysosomal acid alpha-glucosidase (GAA). The result of the GAA deficiency is a ubiquitous lysosomal and non-lysosomal accumulation of glycogen. The most affected tissues are heart, skeletal muscle, liver, and the nervous system. Replacement therapy with the currently approved enzyme relies on M6P-mediated endocytosis. However, therapeutic outcomes still leave room for improvement, especially with regard to skeletal muscles. We tested the uptake, activity, and effect on glucose metabolism of a non-phosphorylated recombinant human GAA produced in moss (moss-GAA). Three variants of moss-GAA differing in glycosylation pattern have been analyzed two with terminal mannose residues in a paucimannosidic (Man3) or high-mannose (Man 5) configuration and one with terminal N-acetylglucosamine residues (GnGn). Compared to alglucosidase alfa the moss-GAA GnGn variant showed increased uptake in differentiated myotubes. Moreover, incubation of immortalized muscle cells of Gaa-/- mice with moss-GAA GnGn led to similarly efficient clearance of accumulated glycogen as with alglucosidase alfa. These initial data suggest that M6P-residues might not always be necessary for the cellular uptake in enzyme replacement therapy (ERT) and indicate the potential of moss-GAA GnGn as novel alternative drug for targeting skeletal muscle in Pompe patients.We read with great interest Alizargar et al […].The paper presents experimental results concerning the ultrasonically-assisted extraction of bioactive compounds from Erodium glaucophyllum roots. A comparison with conventional methodology is presented, and thereby the phytochemical composition and the antioxidant and anti-inflammatory activities of extracts are evaluated. The phenolic profile of Erodium extracts was analyzed by TOF-LC-MS-MS. The identification of phenolic compounds revealed that the major component was (+)-gallocatechin in the aqueous extracts obtained for the different extraction methodologies. The highest quantity of phenolic compounds and antioxidant capacity was found in the hydroethanolic extract obtained by conventional extraction (29.22-25.50 mg GAE/g DM; 21.174 mM Trolox equivalent). The highest content of carotenoids, varying from 0.035 to 0.114 mg/g dry matter, was reached by ultrasonic-assisted extraction. Furthermore, Erodium extracts showed a potent inhibition of the inflammatory reaction by means of the inhibition of tumor necrosis factor-alpha (TNF-α). The extracts obtained when ultrasound extraction was combined with ethanolwater (5050, v/v) presented the greatest inhibition (92%).Iron deficiency is a global epidemic affecting a third of the world’s population. Current efforts are focused on investigating sustainable ways to improve the bioavailability of iron in plant-based diets. Incorporating microgreens into the diet of at-risk groups in populations could be a useful tool in the management and prevention of iron deficiency. This study analysed and compared the mineral content and bioavailability of iron from microgreen and mature vegetables. The mineral content of rocket, broccoli and fenugreek microgreens and their mature counterparts was determined using microwave digestion and ICP-OES. Iron solubility and bioavailability from the vegetables were determined by a simulated gastrointestinal in vitro digestion and subsequent measurement of ferritin in Caco-2 cells as a surrogate marker of iron uptake. Iron contents of mature fenugreek and rocket were significantly higher than those of the microgreens. Mature fenugreek and broccoli showed significantly (p less then 0.001) higher bioaccessibility and low-molecular-weight iron than found in the microgreens. Moreover, iron uptake by Caco-2 cells was significantly higher only from fenugreek microgreens than the mature vegetable. While all vegetables except broccoli enhanced FeSO4 uptake, the response to ferric ammonium citrate (FAC) was inhibitory apart from the mature rocket. Ascorbic acid significantly enhanced iron uptake from mature fenugreek and rocket. Microgreen fenugreek may be bred for a higher content of enhancers of iron availability as a strategy to improve iron nutrition in the populace.A small amount of emerging research has observed variations between individual sensitivity, preference and intake of salt in the presence of single nucleotide polymorphisms (SNP) on the genes encoding salt taste receptors. Sodium intake is a significant risk factor for common diseases in elderly populations such as hypertension and cardiovascular disease; however, this does not fully explain the risk. Research into the influence of salt taste genetics on diet quality is yet to be undertaken and current research on indicators of health is limited and mixed in the direction of associations. Therefore, a secondary analysis of data from a well-characterised elderly cohort (the cross-sectional Retirement Health and Lifestyle Study, n = 536) was conducted to explore relationships between the salt taste-related SNP TRPV1-rs8065080 (assessed by Taqman genotyping assay), dietary habits and biomarkers of health. Data were analysed with standard least squares regression modelling and Tukey’s HSD post hoc tests. No association was found between the TRPV1-rs8065080 genotype, sodium intake or multiple diet quality indices (assessed by food frequency questionnaire). Sodium-related markers of health including blood pressure and markers of kidney function (urinary creatinine and albumin/creatinine ratio) and general health markers, such as Body Mass Index (BMI), were also not related to TRPV1-rs8065080 genotype. To date, this study is the most comprehensive investigation conducted to determine if the TRPV1-rs8065080 genotype relates to sodium intake and health markers influenced by sodium intake. Although no significant relationships were found, these findings are an important contribution to the limited body of knowledge surround this SNP. In addition to further research across other ages and cultures, the TRPV1-rs8065080 genotype may interact with other ion channels, and so further studies are required to determine if polymorphic variations influence sodium intake, diet and health.To date, no head-to-head trials have compared the efficacy of brigatinib and alectinib against anaplastic lymphoma kinase (ALK) rearrangement-positive (ALK-p), ALK-inhibitor-naïve, advanced non-small cell lung cancer (NSCLC) with central nervous system (CNS) metastasis. We conducted an indirect treatment comparison (ITC) between brigatinib and alectinib, with crizotinib as a common comparator, using a Bayesian model with non-informative prior distribution and assessed the between-study heterogeneity of the studies. The primary efficacy endpoint was progression-free survival (PFS), and efficacy was ranked using the surface under the cumulative ranking (SUCRA) curve values. ITC analysis showed that there were no significant differences in PFS between the brigatinib and alectinib arms. However, the SUCRA values revealed that alectinib ranked the highest by efficacy in the overall patient population, whereas brigatinib ranked the highest by efficacy in the CNS metastasis sub-group. Although there were no significant differences in the incidence of G3-5 adverse events between the brigatinib and alectinib arms in the overall patient population, the data were deemed insufficient for the CNS metastasis sub-group analysis. This study provides critical information to clinicians regarding the efficacy of brigatinib for ALK-p, ALK-inhibitor-naïve, advanced NSCLC patients, with and without CNS metastasis. Larger randomized, controlled trials are warranted to confirm our results.Prostaglandins are a group of physiologically active lipid compounds derived from arachidonic acid. Our previous study has found that prostaglandin E2 promotes neurite outgrowth in NSC-34 cells, which are a model for motor neuron development. However, the effects of other prostaglandins on neuronal differentiation are poorly understood. The present study investigated the effect of prostaglandin D2 (PGD2) on neuritogenesis in NSC-34 cells. Exposure to PGD2 resulted in increased percentages of neurite-bearing cells and neurite length. Although D-prostanoid receptor (DP) 1 and DP2 were dominantly expressed in the cells, BW245C (a DP1 agonist) and 15(R)-15-methyl PGD2 (a DP2 agonist) had no effect on neurite outgrowth. Enzyme-linked immunosorbent assay demonstrated that PGD2 was converted to 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) under cell-free conditions. Exogenously applied 15d-PGJ2 mimicked the effect of PGD2 on neurite outgrowth. GW9662, a peroxisome proliferator-activated receptor-gamma (PPARγ) antagonist, suppressed PGD2-induced neurite outgrowth. Moreover, PGD2 and 15d-PGJ2 increased the protein expression of Islet-1 (the earliest marker of developing motor neurons), and these increases were suppressed by co-treatment with GW9662. These results suggest that PGD2 induces neuritogenesis in NSC-34 cells and that PGD2-induced neurite outgrowth was mediated by the activation of PPARγ through the metabolite 15d-PGJ2.Neovascular retinal degenerative diseases are the leading causes of blindness in developed countries. Anti-vascular endothelial growth factor (VEGF) therapy is commonly used to treat these diseases currently. However, recent reports indicate that long term suppression of VEGF in the eye is associated with chorioretinal atrophy. Therefore, a physiological amount of VEGF is required for retinal homeostasis. Hypoxia-inducible factor (HIF) is a transcriptional factor upstream of VEGF. We previously reported that HIF regulated pathological angiogenesis in the retina of murine models of oxygen-induced retinopathy and laser-induced choroidal neovascularization. Most of the known HIF inhibitors are anti-cancer agents which may have systemic adverse effects in for clinical use; thus, there is a need for safer and less invasive HIF inhibitors. In this study, we screened marine products, especially fish ingredients, and found that six species of fish had HIF inhibitory effects. Among them, administration of Decapterus tabl ingredients significantly suppressed retinal neovascular tufts by inhibiting HIF expression in a murine oxygen-induced retinopathy model. These results indicate that particular fish ingredients can act as anti-angiogenic agents in retinal neovascularization diseases.Porous gold (PG) layers modified electrodes have emerged as valuable enzyme support to realize multiple enzyme-based bioelectrochemical devices like biosensors, enzymatic fuel cells (EFCs), smart drug delivery devices triggered by enzyme catalyzed reactions, etc. PG films can be synthesized by using different methods such as dealloying, electrochemical (e.g., templated electrochemical deposition, self-templated electrochemical deposition, etc.) self-assembly and sputter deposition. This review aims to summarize the recent findings about PG synthesis and electrosynthesis, its characterization and application for enzyme-based electrodes used for biosensors and enzymatic fuel cells (EFCs) development.Aims The purpose of this study was to assess the changes in hepatic morphology evaluated by computed tomography (CT) examination in patients with hepatitis C virus (HCV)-related compensated cirrhosis who achieved sustained virologic response (SVR) after direct-acting antivirals (DAAs) treatment. Methods CT examination was performed in 56 patients with HCV-related compensated cirrhosis before and within 6-18 months after the treatment with Ombitasvir/Paritaprevir/ritonavir + Dasabuvir. The liver CT changes were assessed by measuring liver volume, caudate-right lobe ratio (C/RL), hepatic vessels diameters, periportal widening space, and right posterior notch. Portal trunk, splenic and superior mesenteric vein diameters, as well as spleen volume were assessed as part of portal hypertension. Results Right hepatic vein diameter was significantly wider after treatment (median 8.12 mm; IQR 4.20) than before treatment (median 6.36 mm; IQR 3.94) z = -3.894; p less then 0.001. The liver volume was significantly higher prior to the treatment (median 1786.77 mm3; IQR 879.23) than after treatment (median 1716.44 mm3; IQR 840.50), z = -1.970; p = 0.049. Splenic volume was considerably higher before treatment (median 564.79 mm3; IQR 342.54) than after (median 474.45 mm3; IQR 330.00), z = -2.500; p = 0.012. The other parameters, such as C/RL, periportal space widening, and right hepatic notch showed no significant changes. Conclusions SVR in patients with HCV-related compensated cirrhosis treated with DAAs is associated with some improvements of hepatic morphology detectable by CT, the most constant being the increase of right hepatic vein diameter.This paper describes the methods of the Wave 1 (2018) International Tobacco Control (ITC) Japan Survey. The respondents were adults aged 20 years and older in one of four user groups (1) cigarette-only smokers who smoked at least monthly and used heated tobacco products (HTPs) not at all or less than weekly, (2) HTP-only users who used HTPs at least weekly and smoked cigarettes not at all or less than monthly, (3) cigarette-HTP dual users who smoked at least monthly and used HTPs at least weekly, and (4) non-users who had never smoked or who smoked less than monthly and used HTPs less than weekly. Eligible respondents were recruited by a commercial survey firm from its online panel. Respondents were allocated proportionally to sample strata based on demographic, geographic, and user type specifications benchmarked to a national reference. Survey weights, accounting for smoking/HTP use status, sex, age, education, and geography, were calibrated to benchmarks from a nationally representative survey in Japan. Response rate was 45.1% and cooperation rate was 96.3%. The total sample size was 4615 (3288 cigarette smokers, 164 exclusive HTP users, 549 cigarette-HTP dual users, and 614 non-users). The 2018 ITC Japan Survey sampling design and survey data collection methods will allow analyses to examine prospectively the use of cigarettes and HTPs in Japan and factors associated with the use of both products and of transitions between them.To control the density of a CH3NH2 molecular defect, which strongly contributed to a significant THz-wave absorption property in the CH3NH3PbI3 hybrid perovskite thin film formed by the sequential vacuum evaporation method, we performed post-annealing processes with various temperatures and times. In the thin film after post-annealing at 110 °C for 45 min, the density of the CH3NH2 molecular defect was minimized, and CH3NH3I and PbI2 disappeared in the thin film after the post-annealing process at 150 °C for 30 min. However, the density of the CH3NH2 molecular defect increased. Moreover, the THz-wave absorption property for each thin film was obtained using a THz time-domain spectroscopy to understand the correlation between the density of a molecular defect and the THz-wave oscillation strength at 1.6 THz, which originated in the molecular defect-incorporated hybrid perovskite structure. There is a strong linear correlation between the oscillator strength of a significant THz-wave absorption at 1.6 THz and the CH3NH2 molecular defect density.A methodology was developed for direct observation and analysis of particle movements near a microfiltration membrane. A high speed camera (1196 frames per second) was mounted on a microscope to record a hollow fiber membrane in a filtration cell with a transparent wall. Filtrations were conducted at varying pressure and crossflow velocities using synthetic core-shell particles (diameter 1.6 μm) of no and high negative surface charge. MATLAB scripts were developed to track the particle positions and calculate velocities of particle movements across and towards the membrane surface. Data showed that the velocity of particles along the membrane increases with distance from the membrane surface which correlates well with a fluid velocity profile obtained from CFD modelling. Particle track and trace was used to calculate the particle count profiles towards the membrane and document a higher concentration of particles near the membrane surface than in the bulk. Calculation of particle velocity towards and away from the membrane showed a region within 3-80 μm from the membrane surface with particle velocities higher than expected from the velocity of water through the membrane, thus the permeation drag underpredicts the actual velocity of particles towards the membrane. Near the membrane, particle velocities shift direction and move away. This is not described in classical filtration theory, but it has been speculated that this is an effect of particle rotation or due to membrane vibration or change in flow pattern close to the membrane.Antibiotics are widely applied for plant cultivation in vitro to eliminate bacterial contamination. However, they can have both positive and negative effects on the cells of cultivated plants, and these effects largely depend on the type antibiotic used and its concentration. The objective of the present study was to estimate the effect of β-lactam antibiotics ampicillin (Amp) and cefotaxime (Cef) on microspore embryogenesis induction in vitro in the Brassica species. The performed experiments confirmed cefotaxime inhibits microspores in B. napus and B. oleracea, even in concentrations as low as 50 mg/L. The highest embryo yield was obtained for B. napus in the NLN-13 medium with added ampicillin in concentrations of 50-100 mg/L as an antimicrobial agent. This embryo yield was significantly higher than that obtained in a medium without supplemented antibiotics and two times higher than in the medium with added cefotaxime. Analogous results were obtained for B. oleracea and B. rapa.Direct alcohol fuel cells are highly promising as efficient power sources for various mobile and portable applications. However, for the further advancement of fuel cell technology it is necessary to develop new, cost-effective Pt-free electrocatalysts that could provide efficient alcohol oxidation and also resist cross-over poisoning. Here, we report new electrocatalytic materials for ethylene glycol oxidation, which are based on AuAg linear nanostructures. We demonstrate a low temperature tunable synthesis that enables the preparation of one dimensional (1D) AuAg nanostructures ranging from nanowires to a new nano-necklace-like structure. Using a two-step method, we showed that, by aging the initial reaction mixture at various temperatures, we produced ultrathin AuAg nanowires with a diameter of 9.2 ± 2 and 3.8 ± 1.6 nm, respectively. These nanowires exhibited a high catalytic performance for the electro-oxidation of ethylene glycol with remarkable poisoning resistance. These results highlight the benefit of 1D metal alloy-based nanocatalysts for fuel cell applications and are expected to make an important contribution to the further development of fuel cell technology.Discovering that metals are essential for the structure and function of biomolecules has given a completely new perspective on the role of metal ions in living organisms. Nowadays, the design and synthesis of new metal-based compounds, as well as metal ion binding components, for the treatment of human diseases is one of the main aims of bioinorganic chemistry. One of the areas in vanadium-based compound research is their potential anticancer activity. In this review, we summarize recent molecular and cellular mechanisms in the cytotoxic activity of many different synthetic vanadium complexes as well as inorganic salts. Such mechanisms shall include DNA binding, oxidative stress, cell cycle regulation and programed cell death. We focus mainly on cellular studies involving many type of cancer cell lines trying to highlight some new significant advances.Etoposide, doxorubicin and cisplatin plus oral mitotane (EDP-M) comprise the reference regimen in the management of patients with adrenocortical carcinoma (ACC). In this paper, we described the outcome of 58 patients with advanced/metastatic ACC consecutively treated with EDP-M in a reference center for this rare disease in Italy. In this series, EDP-M obtained a partial response in 50% of patients; median progression free survival (PFS) and overall survival were 10.1 months (95% Confidence Interval [CI 95%] 8.1-12.8) and 18.7 months (95% CI 14.6-22.8), respectively. EDP-M was not interrupted in five patients showing disease progression after two cycles without the appearance of new lesions and mitotane levels below the therapeutic range. In two of them, the disease remained stable at further imaging evaluations and the other three obtained a partial response. Twenty-six responding patients underwent surgery of residual disease and 13 of them became disease free. Surgery identified a pathological complete response (pCR) in four patients (7%) and Ki67 expression in post-chemotherapy tumor specimens, inferior to 15% (median value), was associated with better PFS and survival. In the present study, the EDP-M regimen is confirmed to have a limited efficacy. Early disease progression does not mean treatment inefficacy. Surgery of residual disease in partially responding patients allows for the detection of pCR in few of them and this condition is predictive of long-term survival. Ki67 expression of post-chemotherapy residual disease could be an additional prognostic factor that deserves to be studied further.The purpose of this study was to investigate the effect of continuous case management with a flexible approach on the prevention of suicide by suicide reattempt in a real clinical setting. The subjects in this study were 526 suicide attempters who visited emergency rooms in a teaching hospital in South Korea. Subjects were provided a continuous case management program with a flexible approach according to the severity of their suicide risk and needs. During the entire observation period (from 182 days to 855 days, mean = 572 ± 254), 18 patients (3.7%) died by suicide reattempt Eight patients (2.27%) in the case management group and 10 patients (7.35%) in the no-case management group. The Cox regression analysis showed that the case management group had a 75% lower risk of death from suicide attempts than the no-case management group (HR = 0.34, 95% CI = 0.13-0.87). This result was shown to be more robust after adjusting for confounding factors such as gender, age, psychiatric treatment, suicide attempts, and family history of suicide (adjusted HR = 0.27, 95% CI = 0.09-0.83). This study was conducted in a single teaching hospital and not a randomized controlled one. A flexible and continuous case management program for suicide attempters is effective for preventing death by suicide reattempts.In this Special Issue of Nutrients, „The Role of Selenium in Health and Disease” covers diverse diseases in the 8 original research articles and 2 reviews, such as cardiovascular disorders (CVD), metabolic syndrome, obesity, cancer, and viral infection, and highlights novel potential biomarkers of disease risk and prognosis […].More than one in four parents in the United States of America (USA) have low health literacy, which is associated with reduced health equity and negatively impacts child health outcomes. Early intervention (EI) programs are optimally placed to build the health literacy capacity of caregivers, which could improve health equity. The health literacy of interdisciplinary EI providers has not previously been measured. This study used the Health Literacy Questionnaire (HLQ) with EI providers (n = 10) to investigate evidence based on response (cognitive) processes. Narratives from cognitive interviews gave reasons for HLQ score choices, and concordance and discordance between HLQ item intent descriptions and narrative data were assessed using thematic analysis. Results found scales with highest concordance for Scales 3, 6, and 9 (each 96%, n = 24). Concordance was lowest on Scale 5 (88%, n = 22), although still strong with only 12% discordance. Three themes reflecting discordance were identified (1) Differences between Australian and USA culture/health systems; (2) Healthcare provider perspective; and (3) Participants with no health problems to manage. Results show strong concordance between EI providers’ narrative responses and item intents. Study results contribute validity evidence for the use of HLQ data to inform interventions that build health literacy capacity of EI providers to then empower and build the health literacy of EI parents.Beside skeletal system maintenance and protection, possible extra-calcium roles of vitamin D have been recently described. In particular, studies have investigated possible roles of vitamin D as a key modulator of inflammation and immune mechanisms and of the intestinal mucosa barrier. In this regard, vitamin D has been considered as a factor that affects different conditions such as immune-mediated diseases. The new emerging role of vitamin D and its involvement in immune modulation has led it to be considered as a possible key factor involved in celiac disease (CD) onset. CD is a chronic immune-mediated enteropathy of the small intestine that is triggered by dietary gluten protein exposure in individuals who are genetically predisposed. However, along with gluten, other environmental factors are also involved in CD onset. The renewed interest in a molecule that offers great possibilities for new roles has led to an increase in studies, although there remains a lack of studies aimed at contextualizing the role of vitamin D on CD. This review aims to define the possible role of vitamin D in CD onset as it is presently understood, taking into account potential links among vitamin D, the immune system and CD.This article reviews the state-of-the -art of mechanical material properties and measurement methods of nanostructures obtained by two nanoscale additive manufacturing methods gas-assisted focused electron and focused ion beam-induced deposition using volatile organic and organometallic precursors. Gas-assisted focused electron and ion beam-induced deposition-based additive manufacturing technologies enable the direct-write fabrication of complex 3D nanostructures with feature dimensions below 50 nm, pore-free and nanometer-smooth high-fidelity surfaces, and an increasing flexibility in choice of materials via novel precursors. We discuss the principles, possibilities, and literature proven examples related to the mechanical properties of such 3D nanoobjects. Most materials fabricated via these approaches reveal a metal matrix composition with metallic nanograins embedded in a carbonaceous matrix. By that, specific material functionalities, such as magnetic, electrical, or optical can be largely independently tuned with respect to mechanical properties governed mostly by the matrix. The carbonaceous matrix can be precisely tuned via electron and/or ion beam irradiation with respect to the carbon network, carbon hybridization, and volatile element content and thus take mechanical properties ranging from polymeric-like over amorphous-like toward diamond-like behavior. Such metal matrix nanostructures open up entirely new applications, which exploit their full potential in combination with the unique 3D additive manufacturing capabilities at the nanoscale.The current epidemic of antibiotic-resistant infections urges to develop alternatives to less-effective antibiotics. To assess anti-bacterial potential, a novel coordinate compound (RU-S4) was synthesized using ruthenium-Schiff base-benzimidazole ligand, where ruthenium chloride was used as the central atom. RU-S4 was characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy. Antibacterial effect of RU-S4 was studied against Staphylococcus aureus (NCTC 8511), vancomycin-resistant Staphylococcus aureus (VRSA) (CCM 1767), methicillin-resistant Staphylococcus aureus (MRSA) (ST239 SCCmecIIIA), and hospital isolate Staphylococcus epidermidis. The antibacterial activity of RU-S4 was checked by growth curve analysis and the outcome was supported by optical microscopy imaging and fluorescence LIVE/DEAD cell imaging. In vivo (balb/c mice) infection model prepared with VRSA (CCM 1767) and treated with RU-S4. In our experimental conditions, all infected mice were cured. The interaction of coordination compound with bacterial cells were further confirmed by cryo-scanning electron microscope (Cryo-SEM). RU-S4 was completely non-toxic against mammalian cells and in mice and subsequently treated with synthesized RU-S4.This study investigated physical activity (PA) and sedentary time (SED) in relation to hippocampal gray matter volume (GMV) in pediatric overweight/obesity. Ninety-three children (10 ± 1 year) were classified as overweight, obesity type I, or type II-III. PA was assessed with non-dominant wrist accelerometers. GMV was acquired by magnetic resonance imaging (MRI). Neither PA nor SED associated with GMV in the hippocampus in the whole sample (p > 0.05). However, we found some evidence of moderation by weight status (p less then 0.150). Moderate-to-vigorous PA (MVPA) positively associated with GMV in the right hippocampus in obesity type I (B = 5.62, p = 0.017), which remained when considering SED, light PA, and sleep using compositional data (γ = 375.3, p = 0.04). Compositional models also depicted a negative association of SED relative to the remaining behaviors with GMV in the right hippocampus in overweight (γ = -1838.4, p = 0.038). Reallocating 20 min/day of SED to MVPA was associated with 100 mm3 GMV in the right hippocampus in obesity type I. Multivariate pattern analysis showed a negative-to-positive association pattern between PA of increasing intensity and GMV in the right hippocampus in obesity type II-III. Our findings support that reducing SED and increasing MVPA are associated with greater GMV in the right hippocampus in pediatric overweight/obesity. Further studies should corroborate our findings.


