• Faircloth Henningsen opublikował 5 miesięcy, 1 tydzień temu

    In response to the ongoing coronavirus disease 2019 (COVID-19) pandemic, a panel of assays has been developed and applied to screen collections of approved and investigational drugs for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activity in a quantitative high-throughput screening (qHTS) format. In this review, we applied data-driven approaches to evaluate the ability of each assay to identify potential anti-SARS-CoV-2 leads. Multitarget assays were found to show advantages in terms of accuracy and efficiency over single-target assays, whereas target-specific assays were more suitable for investigating compound mechanisms of action. Moreover, strict filtering with counter screens might be more detrimental than beneficial in identifying true positives. Thus, developing novel HTS assays acting simultaneously against multiple targets in the SARS-CoV-2 life cycle will benefit anti-COVID-19 drug discovery.Irritable bowel syndrome (IBS) is a common functional gastrointestinal disease that affects 3.8-9.2% of the world population. It affects the physiology and psychology of patients and increases the burden on families, the healthcare system, society, and economic development. Presently, a large number of studies have shown that compared to healthy individuals, the composition and diversity of gut microbiota in IBS patients have changed, and the proteolytic activity (PA) in fecal supernatant and colonic mucosa of IBS patients has also increased. These findings indicate that the imbalance of intestinal microecology and intestinal protein hydrolysis is closely related to IBS. Furthermore, the intestinal flora is a key substance that regulates the PA and is associated with IBS. The current review described the intestinal microecology and intestinal proteolytic activity of patients with IBS and also discussed the effect of intestinal flora on PA. In summary, this study proposed a pivotal role of gut microbiota and PA in IBS, respectively, and provided an in-depth insight into the diagnosis and treatment targets of IBS as well as the formulation of new treatment strategies for other digestive diseases and protease-related diseases.

    We investigated the biomarkers, immune responses and cellular changes in vaccinated and non-vaccinated goats experimentally challenged with M. haemolytica serotype A2 under rainy and hot tropical conditions. A total of twenty-four clinically healthy, non-pregnant, female goats randomly allocated to 2 groups of 12 goats each were used for the study. The 12 goats in each season were subdivided into three groups (n=4), which served as the control (G-NEG), non-vaccinated (G-POS), and vaccinated (G-VACC). In week-1, the G-VACC received 2mL of alum-precipitated pasteurellosis vaccine while G-POS and G-NEG received 2ml of sterile PBS. In week 2, the G-POS and G-VACC received 1mL intranasal spray containing 10

    CFU of M. haemolytica serotype A2. Inoculation was followed by daily monitoring and weekly bleeding for eight weeks to collect data and serum for biomarkers and immune responses using commercial ELISA test kits. The goats were humanely euthanised at the end of the experiments to collect lungs and the submandmental humidity recorded in the rainy season. Increased relative humidity in the rainy season is a significant stress factor for the higher susceptibility and severity of pneumonic mannheimiosis of goats in the tropics. Vaccination of goats using the alum precipitated Pasteurella multocida vaccine before the onset of the rainy season is recommended to minimise mortality due to potential outbreaks of pneumonia during the rainy season.Acinetobacter baumannii is Gram-negative, an opportunistic pathogen responsible for life-threatening ventilator-associated pneumonia. World Health Organization (WHO) enlisted it as a priority pathogen for which therapeutic options need speculations. Biofilm further benefits this pathogen and aids 100-1000 folds more resistant against antimicrobials and the host immune system. In this study, ursolic acid (1) and its amide derivatives (2-4) explored for their antimicrobial and antibiofilm potential against colistin-resistant A. baumannii (CRAB) reference and clinical strains. Viability, crystal violet, microscopic, and gene expression assays further detailed the active compounds’ antimicrobial and biofilm inhibition potential. Compound 4 [N-(2′,4′-dinitrophenyl)-3β-hydroxyurs-12-en-28-carbonamide)], a synthetic amide derivate of ursolic acid significantly inhibits bacterial growth with MIC in the range of 78-156 μg/mL against CRAB isolates. This compound failed to completely kill the CRAB isolates even at 500 μThus, further studies are required to decipher the complete mechanism of action to develop 4 as a new pharmacophore against A. baumannii.Polymicrobial biofilms involving fungal-bacterial interactions are stated to modulate host immune response and exhibit enhanced antibiotic resistance. In this milieu, clinically important opportunistic pathogens Candida albicans and Staphylococcus epidermidis associate synergistically and instigate implant and blood stream infections. Impediment of virulence traits that support successive pathogenic lifestyle and inter-kingdom interactions without altering the microbial growth represents an attractive alternate strategy. To accomplish this objective, 5-hydroxymethyl-2-furaldehyde (5HM2F), a reported antibiofilm agent against C. albicans, was considered for this study. 5HM2F significantly repressed the biofilm formation of S. epidermidis and mixed-species at 300 μg/mL and 400 μg/mL, respectively without modulating the growth. Microscopic analyses and phenotypic assays explicated the competency of 5HM2F to impede biofilm formation, hyphal growth, initial attachment, intercellular adhesion, and fungal-bacterial interaction. Further, 5HM2F greatly reduced the secreted hydrolases production. Reduced content of biofilm matrix components upon 5HM2F treatment was believed to be the underlying reason for enhanced antibiotic and/antifungal susceptibility. Additionally, qPCR analysis correlated well with in vitro bioassays wherein, 5HM2F was identified to repress the expression of important genes associated with hyphal morphogenesis, adhesion, biofilm formation and virulence in both mono-species and mixed-species. Reduced virulence and colonization of mono-species and mixed-species in 5HM2F treated Caenorhabditis elegans substantiated the antibiofilm and antivirulence potential of 5HM2F. Overall, this study proposes 5HM2F as a potent therapeutic candidate against single and mixed-species biofilm infections of C. albicans and S. epidermidis.Infections caused by Staphylococcus aureus are increasingly prevalent, and treatment has become more difficult due to the emergence of strains that are resistant to multiple drugs, such as methicillin-resistant Staphylococcus aureus (MRSA). Penicillin-binding proteins (PBPs) are essential enzymes in peptidoglycan biosynthesis. Only found in bacteria, they are an excellent target for the development of bacterial control strategies. S. aureus has 4 PBPs, and only PBP2 has transglycosylation activity, making it a good model to evaluate whether the inactivation of the transglycosylase domain (PBP2t) could lead to bacterial death. (His6)-tagged PBP2t was purified from the E. coli cell lysate using Ni-charged resin, and ELISA and immunoblotting assays demonstrated that PBP2t is immunogenic. Flow cytometry analysis was performed to verify the binding of polyclonal antibodies to the bacterial cell surface. In order to verify the ability to provide protection, immunized mice were challenged with a sublethal dose of MRSA, and the bacterial loads in kidneys and spleen were evaluated. A reduction of 2-2.5 logs was seen in organs from immunized mice compared with the negative controls in two independent assays (p less then 0.01). Our results demonstrate that the PBP2t is a promising target for the development of novel antimicrobial strategies, but further testing should be performed to validate the protection conferred by immunization with this protein.

    One of the most significant features of poor prognosis in COVID-19 is pulmonary fibrosis. Nintedanib is a new antifibrotic agent that interferes with processes of pulmonary fibrosis. This study aimed to investigate the efficacy and safety of nintedanib in COVID-19.

    This was an interventional study in which adult patients with COVID-19 requiring mechanical ventilation were consecutively enrolled. The primary endpoint was 28-day mortality after the initiation of mechanical ventilation. The secondary endpoints were length of mechanical ventilation, volume of lung injury, and the incidence of gastrointestinal adverse events and acute liver failure.

    Thirty patients with COVID-19 underwent nintedanib therapy. We included 30 patients not receiving nintedanib as the historical control group. There were no significant differences in 28-day mortality between the groups (23.3% vs 20%, P = 0.834). Lengths of mechanical ventilation were significantly shorter in the nintedanib group (P = 0.046). Computed tomography volumetry showed that the percentages of high-attenuation areas were significantly lower in the nintedanib group at liberation from mechanical ventilation (38.7% vs 25.7%, P = 0.027). There were no significant differences in the adverse events.

    The administration of nintedanib may offer potential benefits for minimizing lung injury in COVID-19.

    The administration of nintedanib may offer potential benefits for minimizing lung injury in COVID-19.Nanosecond pulsed electric field (nsPEF) processing is gaining momentum as a physical means for single-cell bioconversion efficiency enhancement. The technology allows biomass yields per substrate (YX/S) to be leveraged and poses a viable option for stimulating intracellular compound production. NsPEF processing thus resonates with myriad domains spanning the pharmaceutical and medical sectors, as well as food and feed production. The exact working mechanisms underlying nsPEF-based enhancement of bioconversion efficiency, however, remain elusive, and a better understanding would be pivotal for leveraging process control to broaden the application of nsPEF and scale-up industrial implementation. To bridge this gap, the study provides the electrotechnological and metabolic fundamentals of nsPEF processing in the bio-based domain to enable a critical evaluation of pathways underlying the enhancement of single-cell bioconversion efficiency. Evidence suggests that treating cells during the rapid proliferating and F applications in the bio-based domain by providing a basis to gain a better understanding of cellular mechanisms underlying an nsPEF-based enhancement of cellular bioconversion efficiency and suggests best practice guidelines for nsPEF documentation for improved knowledge transfer. Better understanding and reporting of processes parameters and consequently improved process control could foster industrial-scale nsPEF realization and ultimately aid in perpetuating nsPEF applicability within the bio-based domain.The Neurofeedback Collaborative Group1 made substantial efforts in assessing clinical effects of neurofeedback (NF) as a promising nonpharmacological treatment option for attention-deficit/hyperactivity disorder (ADHD). In a double-blind, placebo-controlled randomized clinical trial (RCT), they evaluated the specific effects of a standard NF protocol (theta/beta ratio [TBR] training) compared to a placebo-like control group. Similar to pharmacological studies, the placebo-like intervention can be considered as a gold standard, as it allows evaluation of specific effects of NF training.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0