-
McKee Kenney opublikował 1 rok, 3 miesiące temu
The four horses with non-responsive lameness and significant impairment in athletic performance were daily treated with PEA-um into their normal diet. After four months of PEA-um supplementation, all horses showed remissions of lameness that led to their reintroduction into showjumping competitions without disease recurrence. Therefore, despite the small number of cases included in this study, these observations suggest a good prospective for developing a controlled experiment to test PEA in a larger cohort of horses.Different kinds of red algae are enriched with chemically diverse carbohydrates. In particular, a group of sulfated polysaccharides, which were isolated from the cell walls of red algae, gained a large amount of attention due to their broad-spectrum antimicrobial activities. Within that group, carrageenans (CGs) were expected to be the first clinically applicable microbicides that could prevent various viral infections due to their superior antiviral potency and desirable safety profiles in subclinical studies. However, their anticipated beneficial effects could not be validated in human studies. To assess the value of a second attempt at pharmacologically developing CGs as a new class of preventive microbicides, all preclinical and clinical development processes of CG-based microbicides need to be thoroughly re-evaluated. In this review, the in vitro toxicities; in vivo safety profiles; and in vitro, ex vivo, and in vivo antiviral activities of CGs are summarized according to the study volume of their target viruses, which include human immunodeficiency virus, herpesviruses, respiratory viruses, human papillomavirus, dengue virus, and other viruses along with a description of their antiviral modes of action and development of antiviral resistance. This evaluation of the strengths and weaknesses of CGs will help provide future research directions that may lead to the successful development of CG-based antimicrobial prophylactics.The retinal pigment epithelium (RPE) plays a key role in retinal health, being essential for the protection against reactive oxygen species (ROS). Nevertheless, excessive oxidative stress can induce RPE dysfunction, promoting visual loss. Our aim is to clarify the possible implication of CYP2E1 in ethanol (EtOH)-induced oxidative stress in RPE alterations. Despite the increase in the levels of ROS, measured by fluorescence probes, the RPE cells exposed to the lowest EtOH concentrations were able to maintain cell survival, measured by the Cell Proliferation Kit II (XTT). However, EtOH-induced oxidative stress modified inflammation and angiogenesis biomarkers, analyzed by proteome array, ELISA, qPCR and Western blot. The highest EtOH concentration used stimulated a large increase in ROS levels, upregulating the cytochrome P450-2E1 (CYP2E1) and promoting cell death. The use of antioxidants such as N-acetylcysteine (NAC) and diallyl sulfide (DAS), which is also a CYP2E1 inhibitor, reverted cell death and oxidative stress, modulating also the upstream angiogenesis and inflammation regulators. Because oxidative stress plays a central role in most frequent ocular diseases, the results herein support the proposal that CYP2E1 upregulation could aggravate retinal degeneration, especially in those patients with high baseline oxidative stress levels due to their ocular pathology and should be considered as a risk factor.This study aimed to investigate the time courses of angle opening parameters and the relationships of these with the corneal endothelial cell density (ECD) and the intraocular pressure (IOP) after posterior chamber phakic intraocular lens (Visian ICLTM, STAAR Surgical) implantation. We evaluated 116 eyes of 59 consecutive patients (mean age ± standard deviation, 34.0 ± 8.8 years) who underwent V5 implantable collamer lens (ICL) implantation. Preoperatively and 1 day, 1 week, and 1, 3, and 18 months postoperatively, we quantitatively measured the angle opening distance at 500 µm (AOD500), the trabecular-iris space area (TISA500), and the trabecular iris angle (TIA500), using anterior segment optical coherence tomography (CASIA 2, Tomey), and assessed the relationships of these measurements with ECD and IOP in ICL-implanted eyes. All angle parameters (AOD500, TISA500, and TIA500) significantly decreased 1 day postoperatively but remained stable thereafter. At 18 months postoperatively, we found no significant correlations of the angle parameters with ECD (Pearson correlation coefficient r = -0.108, p = 0.249 for AOD500; r = -0.162, p = 0.083 for TISA500; r = -0.022, p = 0.815 for TIA500) or between the angle parameters and IOP (r = -0.106, p = 0.256 for AOD500; r = -0.021, p = 0.826 for TISA500; r = -0.018, p = 0.850 for TIA500). The angle opening metrics significantly decreased immediately after ICL implantation but remained stable thereafter. Narrowing of the angle did not significantly affect ECD or IOP in ICL-implanted eyes during the 18-month postoperative period.Cordyceps militaris is currently exploited for commercial production of specialty products as its biomass constituents are enriched in bioactive compounds, such as cordycepin. The rational process development is important for economically feasible production of high quality bioproducts. Light is an abiotic factor affecting the cultivation process of this entomopathogenic fungus, particularly in its carotenoid formation. To uncover the cell response to light exposure, this study aimed to systematically investigate the metabolic responses of C. militaris strain TBRC6039 using integrative genome-wide transcriptome and genome-scale metabolic network (GSMN)-driven analysis. The genome-wide transcriptome analysis showed 8747 expressed genes in the glucose and sucrose cultures grown under light-programming and dark conditions. Of them, 689 differentially expressed genes were significant in response to the light-programming exposure. Through integration with the GSMN-driven analysis using the improved network (iRT1467), the reporter metabolites, e.g., adenosine-5′-monophosphate (AMP) and 2-oxoglutarate, were identified when cultivated under the carotenoid-producing condition controlled by light-programming exposure, linking to up-regulations of the metabolic genes involved in glyoxalase system, as well as cordycepin and carotenoid biosynthesis. These results indicated that C. militaris had a metabolic control in acclimatization to light exposure through transcriptional co-regulation, which supported the cell growth and cordycepin production in addition to the accumulation of carotenoid as a photo-protective bio-pigment. This study provides a perspective in manipulating the metabolic fluxes towards the target metabolites through either genetic or physiological approaches.Tick-borne diseases affecting humans and animals are on the rise worldwide. Vaccines constitute an effective control measure, but very few are available. We selected Lyme borreliosis, a bacterial infection transmitted by the hard tick Ixodes, to validate a new concept to identify vaccine candidates. This disease is the most common tick-borne disease in the Northern Hemisphere. Although attempts to develop a vaccine exist, none have been successfully marketed. In tick-borne diseases, the skin constitutes a very specific environment encountered by the pathogen during its co-inoculation with tick saliva. In a mouse model, we developed a proteomic approach to identify vaccine candidates in skin biopsies. We identified 30 bacterial proteins after syringe inoculation or tick inoculation of bacteria. Discovery proteomics using mass spectrometry might be used in various tick-borne diseases to identify pathogen proteins with early skin expression. It should help to better develop sub-unit vaccines based on a cocktail of several antigens, associated with effective adjuvant and delivery systems of antigens. In all vector-borne diseases, the skin deserves further investigation to better define its role in the elaboration of protective immunity against pathogens.Glioblastoma multiforme (GBM) is the most common and devastating type of primary brain tumor, with a median survival time of only 15 months. Having a clinically applicable genetic biomarker would lead to a paradigm shift in precise diagnosis, personalized therapeutic decisions, and prognostic prediction for GBM. Radiogenomic profiling connecting radiological imaging features with molecular alterations will offer a noninvasive method for genomic studies of GBM. To this end, we analyzed over 3800 glioma and GBM cases across four independent datasets. The Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases were employed for RNA-Seq analysis, whereas the Ivy Glioblastoma Atlas Project (Ivy-GAP) and The Cancer Imaging Archive (TCIA) provided clinicopathological data. The Clinical Proteomic Tumor Analysis Consortium Glioblastoma Multiforme (CPTAC-GBM) was used for proteomic analysis. We identified a simple three-gene transcriptome signature-SOCS3, VEGFA, and TEK-that can connect GBM’s overall prognosis with genes’ expression and simultaneously correlate radiographical features of perfusion imaging with SOCS3 expression levels. More importantly, the rampant development of neovascularization in GBM offers a promising target for therapeutic intervention. However, treatment with bevacizumab failed to improve overall survival. We identified SOCS3 expression levels as a potential selection marker for patients who may benefit from early initiation of angiogenesis inhibitors.Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system (CNS) which can lead to severe disability. Several diseases can mimic the clinical manifestations of MS. This can often lead to a prolonged period that involves numerous tests and investigations before a definitive diagnosis is reached. As well as the possibility of misdiagnosis. Molecular biomarkers can play a unique role in this regard. Molecular biomarkers offer a unique view into the CNS disorders. They help us understand the pathophysiology of disease as well as guiding our diagnostic, therapeutic, and prognostic approaches in CNS disorders. This review highlights the most prominent molecular biomarkers found in the literature with respect to MS and its related disorders. Based on numerous recent clinical and experimental studies, we demonstrate that several molecular biomarkers could very well aid us in differentiating MS from its related disorders. The implications of this work will hopefully serve clinicians and researchers alike, who regularly deal with MS and its related disorders.Human serum albumin (HSA) plays a fundamental role in the human body. It takes part in the transport of exogenic and endogenic substances, especially drugs. Ibuprofen (IBU) is one of the most commonly used non-steroidal anti-inflammatory drugs, used for pain relief, fever relief, and for anti-inflammatory purposes. The binding of ligands with HSA is a significant factor which determines the toxicity and the therapeutic dosages of these substances. The aim of this study was to compare the degree of ibuprofen binding with human serum albumin at various temperatures and protein solution pH values. In order to evaluate conformational changes in HSA caused by interaction with ibuprofen, spectrophotometric (first and second derivatives of the UV-VIS spectrum), and spectrofluorometric analyses were performed concerning the mutual interactions of IBU-HSA. The use of fluorescent spectroscopy allowed for recording fluorescent emissive spectra of HSA (5 × 10-6 mol/dm3) without and with the presence of ibuprofen (1 × 10-5-1 × 10-4 mol/dm3) at temperatures of 308, 310, 312, and 314 K at pH values of 6.


