-
Mortensen Ulrich opublikował 1 rok, 3 miesiące temu
Habitat selection and spatial usage are important components of animal behavior influencing fitness and population dynamic. Understanding the animal-habitat relationship is crucial in ecology, particularly in developing strategies for wildlife management and conservation. As this relationship is governed by environmental features and intra- and interspecific interactions, habitat selection of a population may vary locally between its core and edges. This is particularly true for central place foragers such as gray and harbor seals, where, in the Northeast Atlantic, the availability of habitat and prey around colonies vary at local scale. Here, we study how foraging habitat selection may vary locally under the influence of physical habitat features. Using GPS/GSM tags deployed at different gray and harbor seals’ colonies, we investigated spatial patterns and foraging habitat selection by comparing trip characteristics and home-range similarities and fitting GAMMs to seal foraging locations and environmental data. To highlight the importance of modeling habitat selection at local scale, we fitted individual models to colonies as well as a global model. The global model suffered from issues of homogenization, while colony models showed that foraging habitat selection differed markedly between regions for both species. Despite being capable of undertaking far-ranging trips, both gray and harbor seals selected their foraging habitat depending on local availability, mainly based on distance from the last haul-out and bathymetry. Distance from shore and tidal current also influenced habitat preferences. Results suggest that local conditions have a strong influence on population spatial ecology, highlighting the relevance of processes occurring at fine geographical scale consistent with management within regional units.Forest degradation succession often leads to changes in forest ecosystem functioning. Exactly how the decomposition of leaf litter is affected in a disturbed forest remains unknown. Therefore, in our study, we selected a primary Korean pine forest (PK) and a secondary broad-leaved forest (SF) affected by clear-cutting degradation, both in Northeast China. The aim was to explore the response to changes in the leaf litter decomposition converting PK to SF. The mixed litters of PK and SF were decomposed in situ (1 year). The proportion of remaining litter mass, main chemistry, and soil biotic and abiotic factors were assessed during decomposition, and then, we made an in-depth analysis of the changes in the leaf litter decomposition. According to our results, leaf litter decomposition rate was significantly higher in the PK than that in the SF. Overall, the remaining percent mass of leaf litter’s main chemical quality in SF was higher than in PK, indicating that leaf litter chemical turnover in PK was relatively faster. PK had a significantly higher amount of total phospholipid fatty acids (PLFAs) than SF during decomposition. Based on multivariate regression trees, the forest type influenced the soil habitat factors related to leaf litter decomposition more than decomposition time. Structural equation modeling revealed that litter N was strongly and positively affecting litter decomposition, and the changes in actinomycetes PLFA biomass played a more important role among all the functional groups. Selected soil abiotic factors were indirectly driving litter decomposition through coupling with actinomycetes. This study provides evidence for the complex interactions between leaf litter substrate and soil physical-chemical properties in affecting litter decomposition via soil microorganisms.Both climate change and human exploitation are major threats to plant life in mountain environments. One species that may be particularly sensitive to both of these stressors is the iconic alpine flower edelweiss (Leontopodium alpinum Colm.). Its populations have declined across Europe due to over-collection for its highly prized flowers. Edelweiss is still subject to harvesting across the Romanian Carpathians, but no study has measured to what extent populations are vulnerable to anthropogenic change.Here, we estimated the effects of climate and human disturbance on the fitness of edelweiss. We combined demographic measurements with predictions of future range distribution under climate change to assess the viability of populations across Romania.We found that per capita and per-area seed number and seed mass were similarly promoted by both favorable environmental conditions, represented by rugged landscapes with relatively cold winters and wet summers, and reduced exposure to harvesting, represented by the distance of plants from hiking trails. Modeling these responses under future climate scenarios suggested a slight increase in per-area fitness. However, we found plant ranges contracted by between 14% and 35% by 2050, with plants pushed into high elevation sites.Synthesis. Both total seed number and seed mass are expected to decline across Romania despite individual edelweiss fitness benefiting from a warmer and wetter climate. More generally, our approach of coupling species distribution models with demographic measurements may better inform conservation strategies of ways to protect alpine life in a changing world.Outbreaks of infectious viruses resulting from spillover events from bats have brought much attention to bat-borne zoonoses, which has motivated increased ecological and epidemiological studies on bat populations. Field sampling methods often collect pooled samples of bat excreta from plastic sheets placed under-roosts. However, positive bias is introduced because multiple individuals may contribute to pooled samples, making studies of viral dynamics difficult. Here, we explore the general issue of bias in spatial sample pooling using Hendra virus in Australian bats as a case study. We assessed the accuracy of different under-roost sampling designs using generalized additive models and field data from individually captured bats and pooled urine samples. We then used theoretical simulation models of bat density and under-roost sampling to understand the mechanistic drivers of bias. The most commonly used sampling design estimated viral prevalence 3.2 times higher than individual-level data, with positive bias 5-7 times higher than other designs due to spatial autocorrelation among sampling sheets and clustering of bats in roosts. Simulation results indicate using a stratified random design to collect 30-40 pooled urine samples from 80 to 100 sheets, each with an area of 0.75-1 m2, and would allow estimation of true prevalence with minimum sampling bias and false negatives. These results show that widely used under-roost sampling techniques are highly sensitive to viral presence, but lack specificity, providing limited information regarding viral dynamics. Improved estimation of true prevalence can be attained with minor changes to existing designs such as reducing sheet size, increasing sheet number, and spreading sheets out within the roost area. Our findings provide insight into how spatial sample pooling is vulnerable to bias for a wide range of systems in disease ecology, where optimal sampling design is influenced by pathogen prevalence, host population density, and patterns of aggregation.Understanding genetic variation and structure, adaptive genetic variation, and its relationship with environmental factors is of great significance to understand how plants adapt to climate change and design effective conservation and management strategies. The objective of this study was to (I) investigate the genetic diversity and structure by AFLP markers in 36 populations of R. aureum from northeast China, (Ⅱ) reveal the relative contribution of geographical and environmental impacts on the distribution and genetic differentiation of R. aureum, (Ⅲ) identify outlier loci under selection and evaluate the association between outlier loci and environmental factors, and (Ⅳ) exactly calculate the development trend of population of R. aureum, as it is confronted with severe climate change and to provide information for designing effective conservation and management strategies. We found high genetic variation (I = 0.584) and differentiation among populations (ΦST = 0.703) and moderate levels of genetic diversity within populations of R. aureum. A significant relationship between genetic distance and environmental distance was identified, which suggested that the differentiation of different populations was caused by environmental factors. Using BayeScan and Dfdist, 42 outlier loci are identified and most of the outlier loci are associated with climate or relief factors, suggesting that these loci are linked to genes that are involved in the adaptability of R. aureum to the environment. Species distribution models (SDMs) showed that climate warming will cause a significant reduction in suitable areas for R. aureum, especially under the RCP 85 scenario. Our results help to understand the potential response of R. aureum to climatic changes and provide new perspectives for R. aureum resource management and conservation strategies.Precopulatory courtship plays an essential role in the insemination process and influences postcopulatory behavior between males and females. Male precopulatory oral stimulation of female genitals is rare for invertebrates. Here, we describe an intriguing oral sexual courtship in a cryptic desert beetle Platyope mongolica Faldermann. The males repeatedly contact the female’s genitals using their mouths to gain consent to mate. Furthermore, the rate at which males contact the female’s genitals relates to the copulation success in a series of observations. However, interference in oral sexual contacts decreased the proportion of successful copulation. Further no-choice tests found homosexual behavior between males with antenna removed. We report the precopulatory oral sexual behavior and its important role for copulation success in P. mongolica for the first time. These findings highlight the significance of oral sexual courtship in sexual selection.Wildfires in many western North American forests are becoming more frequent, larger, and severe, with changed seasonal patterns. In response, coniferous forest ecosystems will transition toward dominance by fire-adapted hardwoods, shrubs, meadows, and grasslands, which may benefit some faunal communities, but not others. We describe factors that limit and promote faunal resilience to shifting wildfire regimes for terrestrial and aquatic ecosystems. We highlight the potential value of interspersed nonforest patches to terrestrial wildlife. Similarly, we review watershed thresholds and factors that control the resilience of aquatic ecosystems to wildfire, mediated by thermal changes and chemical, debris, and sediment loadings. We present a 2-dimensional life history framework to describe temporal and spatial life history traits that species use to resist wildfire effects or to recover after wildfire disturbance at a metapopulation scale. The role of fire refuge is explored for metapopulations of species. In aquatic systems, recovery of assemblages postfire may be faster for smaller fires where unburned tributary basins or instream structures provide refuge from debris and sediment flows. We envision that more-frequent, lower-severity fires will favor opportunistic species and that less-frequent high-severity fires will favor better competitors. Along the spatial dimension, we hypothesize that fire regimes that are predictable and generate burned patches in close proximity to refuge will favor species that move to refuges and later recolonize, whereas fire regimes that tend to generate less-severely burned patches may favor species that shelter in place. Looking beyond the trees to forest fauna, we consider mitigation options to enhance resilience and buy time for species facing a no-analog future.


