• Coffey Sexton opublikował 5 miesięcy, 2 tygodnie temu

    During embryogenesis, neural stem/progenitor cells (NPCs) proliferate and differentiate to form brain tissues. Here, we show that in the developing murine cerebral cortex, the balance between the NPC maintenance and differentiation is coordinated by ubiquitin signals that control the formation of processing bodies (P-bodies), cytoplasmic membraneless organelles critical for cell state regulation. We find that the deubiquitinase Otud4 and the E3 ligase Trim56 counter-regulate the ubiquitination status of a core P-body protein 4E-T to orchestrate the assembly of P-bodies in NPCs. Aberrant induction of 4E-T ubiquitination promotes P-body assembly in NPCs and causes a delay in their cell cycle progression and differentiation. In contrast, loss of 4E-T ubiquitination abrogates P-bodies and results in premature neurogenesis. Thus, our results reveal a critical role of ubiquitin-dependent regulation of P-body formation in NPC maintenance and neurogenesis during brain development.The mammalian skull vault is essential to shape the head and protect the brain, but the cellular and molecular events underlying its development remain incompletely understood. Single-cell transcriptomic profiling from early to late mouse embryonic stages provides a detailed atlas of cranial lineages. It distinguishes various populations of progenitors and reveals a high expression of SOXC genes (encoding the SOX4, SOX11, and SOX12 transcription factors) early in development in actively proliferating and myofibroblast-like osteodermal progenitors. SOXC inactivation in these cells causes severe skull and skin underdevelopment due to the limited expansion of cell populations before and upon lineage commitment. SOXC genes enhance the expression of gene signatures conferring dynamic cellular and molecular properties, including actin cytoskeleton assembly, chromatin remodeling, and signaling pathway induction and responsiveness. These findings shed light onto craniogenic mechanisms and SOXC functions and suggest that similar mechanisms could decisively control many developmental, adult, pathological, and regenerative processes.Cellular senescence is an irreversible growth arrest with a dynamic secretome, termed the senescence-associated secretory phenotype (SASP). Senescence is a cell-intrinsic barrier for reprogramming, whereas the SASP facilitates cell fate conversion in non-senescent cells. However, the mechanisms by which reprogramming-induced senescence regulates cell plasticity are not well understood. Here, we investigate how the heterogeneity of paracrine senescence impacts reprogramming. We show that senescence promotes in vitro reprogramming in a stress-dependent manner. Unbiased proteomics identifies a catalog of SASP factors involved in the cell fate conversion. Amphiregulin (AREG), frequently secreted by senescent cells, promotes in vitro reprogramming by accelerating proliferation and the mesenchymal-epithelial transition via EGFR signaling. AREG treatment diminishes the negative effect of donor age on reprogramming. Finally, AREG enhances in vivo reprogramming in skeletal muscle. Hence, various SASP factors can facilitate cellular plasticity to promote reprogramming and tissue repair.Combinations of ataxia telangiectasia- and Rad3-related kinase inhibitors (ATRis) and poly(ADP-ribose) polymerase inhibitors (PARPis) synergistically kill tumor cells through modulation of complementary DNA repair pathways, but their tolerability is limited by hematological toxicities. To address this, we performed a genome-wide CRISPR-Cas9 screen to identify genetic alterations that hypersensitize cells to a combination of the ATRi RP-3500 with PARPi, including deficiency in RNase H2, RAD51 paralog mutations, or the „alternative lengthening of telomeres” telomere maintenance mechanism. We show that RP-3500 and PARPi combinations kill cells carrying these genetic alterations at doses sub-therapeutic as single agents. We also demonstrate the mechanism of combination hypersensitivity in RNase H2-deficient cells, where we observe an irreversible replication catastrophe, allowing us to design a highly efficacious and tolerable in vivo dosing schedule. We present a comprehensive dataset to inform development of ATRi and PARPi combinations and an experimental framework applicable to other drug combination strategies.Mechanisms underlying tumor-promoting inflammatory processes in colitis-associated colorectal cancer (CAC) remain largely elusive. Here, we provide genetic evidence for distinct B cell-mediated immunoregulatory mechanisms that protect from chronic colitis versus CAC. We demonstrate an inherent capacity of interleukin-10 (IL-10)-producing B cells to differentiate into immunoglobulin A (IgA) plasma cells (PCs) upon Toll-like receptor (TLR) activation. Our data show that B cell-derived IL-10 is essential to limit pathogenic T helper type 1 (Th1)/Th17 T cell responses during chronic colitis, while IgA PCs derived from IL-10+ B cells are being implicated in restraining tumorigenesis during CAC. Formation of a tumor-protective intestinal environment was associated with clonal expansion of specific types of colonic IgA PCs and development of an altered microbiota that attenuated CAC. We thus propose that regulatory B cell-mediated immunomodulation entails temporal release of IL-10, which is superseded by the generation of specific IgA affecting the microbial community, thereby controlling chronic inflammation and tumorigenesis in a distinctive but interrelated manner.Stage I non-small cell lung cancer (NSCLC) presents diverse outcomes. To identify molecular features leading to tumor recurrence in early-stage NSCLC, we perform multiregional whole-exome sequencing (WES), RNA sequencing, and plasma-targeted circulating tumor DNA (ctDNA) detection analysis between recurrent and recurrent-free stage I NSCLC patients (CHN-P cohort) who had undergone R0 resection with a median 5-year follow-up time. Integrated analysis indicates that the multidimensional clinical and genomic model can stratify the prognosis of stage I NSCLC in both CHN-P and EUR-T cohorts and correlates with positive pre-surgical deep next generation sequencing (NGS) ctDNA detection. Increased genomic instability related to DNA interstrand crosslinks and double-strand break repair processes is significantly associated with early tumor relapse. This study reveals important molecular insights into stage I NSCLC and may inform clinical postoperative treatment and follow-up strategies.Bungarus multicinctus is a widely distributed and medically important elapid snake that produces lethal neurotoxic venom. To study and enhance existing antivenom, we explore the complete repertoire of its toxin genes based on de novo chromosome-level assembly and multi-tissue transcriptome data. Comparative genomic analyses suggest that the three-finger toxin family (3FTX) may evolve through the neofunctionalization of flanking LY6E. A long-neglected 3FTX subfamily (i.e., MKA-3FTX) is also investigated. Only one MKA-3FTX gene, which evolves a different protein conformation, is under positive selection and actively transcribed in the venom gland, functioning as a major toxin effector together with MKT-3FTX subfamily homologs. Furthermore, this lethal snake may acquire self-resistance to its β-bungarotoxin via amino acid replacements on fast-evolving KCNA2. This study provides valuable resources for further evolutionary and structure-function studies of snake toxins, which are fundamental for the development of effective antivenoms and drug candidates.Aging is a primary risk factor for neurodegenerative diseases, such as Alzheimer’s disease (AD). SIRT2, an NAD+(nicotinamide adenine dinucleotide)-dependent deacetylase, accumulates in the aging brain. Here, we report that, in the amyloid precursor protein (APP)/PS1 transgenic mouse model of AD, genetic deletion of SIRT2 or pharmacological inhibition of SIRT2 ameliorates cognitive impairment. We find that suppression of SIRT2 enhances acetylation of APP, which promotes non-amyloidogenic processing of APP at the cell surface, leading to increased soluble APP-α (sAPPα). We discover that lysines 132 and 134 of the major pathogenic protein β-amyloid (Aβ) precursor are acetylated and that these residues are deacetylated by SIRT2. Strikingly, exogenous expression of wild-type or an acetylation-mimic APP mutant protects cultured primary neurons from Aβ42 challenge. Our study identifies SIRT2-mediated deacetylation of APP on K132 and K134 as a regulated post-translational modification (PTM) and suggests inhibition of SIRT2 as a potential therapeutic strategy for AD.Mutations in the catalytic subunit of protein kinase A (PKAc) drive the stress hormone disorder adrenal Cushing’s syndrome. We define mechanisms of action for the PKAc-L205R and W196R variants. Proximity proteomic techniques demonstrate that both Cushing’s mutants are excluded from A kinase-anchoring protein (AKAP)-signaling islands, whereas live-cell photoactivation microscopy reveals that these kinase mutants indiscriminately diffuse throughout the cell. Only cAMP analog drugs that displace native PKAc from AKAPs enhance cortisol release. Rescue experiments that incorporate PKAc mutants into AKAP complexes abolish cortisol overproduction, indicating that kinase anchoring restores normal endocrine function. Analyses of adrenal-specific PKAc-W196R knockin mice and Cushing’s syndrome patient tissue reveal defective signaling mechanisms of the disease. Surprisingly each Cushing’s mutant engages a different mitogenic-signaling pathway, with upregulation of YAP/TAZ by PKAc-L205R and ERK kinase activation by PKAc-W196R. Thus, aberrant spatiotemporal regulation of each Cushing’s variant promotes the transmission of distinct downstream pathogenic signals.Circadian rhythms and progression of cell differentiation are closely coupled in multicellular organisms. However, whether establishment of circadian rhythms regulates cell differentiation or vice versa has not been elucidated due to technical limitations. Here, we exploit high cell fate plasticity of plant cells to perform single-cell RNA sequencing during the entire process of cell differentiation. By analyzing reconstructed actual time series of the differentiation processes at single-cell resolution using a method we developed (PeakMatch), we find that the expression profile of clock genes is changed prior to cell differentiation, including induction of the clock gene LUX ARRYTHMO (LUX). ChIP sequencing analysis reveals that LUX induction in early differentiating cells directly targets genes involved in cell-cycle progression to regulate cell differentiation. Taken together, these results not only reveal a guiding role of the plant circadian clock in cell differentiation but also provide an approach for time-series analysis at single-cell resolution.This study underlines the importance of treadmill exercise in reducing α-synuclein (α-syn) spreading in the A53T brain and protecting nigral dopaminergic neurons. Preformed α-syn fibril (PFF) seeding in the internal capsule of young A53T α-syn mice leads to increased spreading of α-syn to substantia nigra and motor cortex and concomitant loss of nigral dopaminergic neurons. However, regular treadmill exercise decreases α-syn spreading in the brain and protects nigral dopaminergic neurons in PFF-seeded mice. Accordingly, treadmill exercise also mitigates α-synucleinopathy in aged A53T mice. While investigating this mechanism, we have observed that treadmill exercise induces the activation of peroxisome proliferator-activated receptor α (PPARα) in the brain to stimulate lysosomal biogenesis via TFEB. Accordingly, treadmill exercise remains unable to stimulate TFEB and reduce α-synucleinopathy in A53T mice lacking PPARα, and fenofibrate, a prototype PPARα agonist, reduces α-synucleinopathy. These results delineate a beneficial function of treadmill exercise in reducing α-syn spreading in the brain via PPARα.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0