• Lauritsen Brandstrup opublikował 5 miesięcy, 1 tydzień temu

    Tracking small laboratory animals such as flies, fish, and worms is used for phenotyping in neuroscience, genetics, disease modelling, and drug discovery. An imaging system with sufficient throughput and spatiotemporal resolution would be capable of imaging a large number of animals, estimating their pose, and quantifying detailed behavioural differences at a scale where hundreds of treatments could be tested simultaneously. Here we report an array of six 12-megapixel cameras that record all the wells of a 96-well plate with sufficient resolution to estimate the pose of C. elegans worms and to extract high-dimensional phenotypic fingerprints. We use the system to study behavioural variability across wild isolates, the sensitisation of worms to repeated blue light stimulation, the phenotypes of worm disease models, and worms’ behavioural responses to drug treatment. Because the system is compatible with standard multiwell plates, it makes computational ethological approaches accessible in existing high-throughput pipelines.Image-based cell phenotyping relies on quantitative measurements as encoded representations of cells; however, defining suitable representations that capture complex imaging features is challenged by the lack of robust methods to segment cells, identify subcellular compartments, and extract relevant features. Variational autoencoder (VAE) approaches produce encouraging results by mapping an image to a representative descriptor, and outperform classical hand-crafted features for morphology, intensity, and texture at differentiating data. Although VAEs show promising results for capturing morphological and organizational features in tissue, single cell image analyses based on VAEs often fail to identify biologically informative features due to uninformative technical variation. Here we propose a multi-encoder VAE (ME-VAE) in single cell image analysis using transformed images as a self-supervised signal to extract transform-invariant biologically meaningful features, including emergent features not obvious from prior knowledge. We show that the proposed architecture improves analysis by making distinct cell populations more separable compared to traditional and recent extensions of VAE architectures and intensity measurements by enhancing phenotypic differences between cells and by improving correlations to other analytic modalities. Better feature extraction and image analysis methods enabled by the ME-VAE will advance our understanding of complex cell biology and enable discoveries previously hidden behind image complexity ultimately improving medical outcomes and drug discovery.Periodontitis (periodontal disease) is a highly prevalent disease, affecting over 65 million adults in the United States alone. Characterized by an overburden of invasive bacteria, gum inflammation and plaque buildup, over time, these symptoms can result in severe loss of gingival tissue attachment, bone resorption and even tooth loss. Although current treatments (local antibiotics and scaling and root planing procedures) target the bacterial dysbiosis, they do not address the underlying inflammatory imbalance in the periodontium. In the healthy steady state, the body naturally combats destructive, imbalanced inflammatory responses through regulatory pathways mediated by cells such as regulatory T cells (Tregs). Consequently, we hypothesized that local enrichment of regulatory lymphocytes (Tregs) could restore local, immunological homeostasis and prevent the main outcome of bone loss. Accordingly, we locally delivered a combination of TGFβ, Rapamycin, and IL2 microspheres in a ligature-induced murine periodontitis model. Herein, we have demonstrated this preventative treatment decreases alveolar bone loss, increases the local ratio of Tregs to T effector cells and changes the local microenvironment’s expression of inflammatory and regenerative markers. Ultimately, these Treg-inducing microspheres appear promising as a method to improve periodontitis outcomes and may be able to serve as a platform delivery system to treat other inflammatory diseases.Mitochondrial ATP synthase is vital not only for cellular energy production but also for energy dissipation and cell death. ATP synthase c-ring was suggested to house the leak channel of mitochondrial permeability transition (mPT), which activates during excitotoxic ischemic insult. In this present study, we purified human c-ring from both eukaryotic and prokaryotic hosts to biophysically characterize its channel activity. We show that purified c-ring forms a large multi-conductance, voltage-gated ion channel that is inhibited by the addition of ATP synthase F1 subcomplex. In contrast, dissociation of F1 from FO occurs during excitotoxic neuronal death suggesting that the F1 constitutes the gate of the channel. mPT is known to dissipate the osmotic gradient across the inner membrane during cell death. We show that ATP synthase c-subunit knock down (KD) prevents the osmotic change in response to high calcium and eliminates large conductance, Ca2+ and CsA sensitive channel activity of mPT. These findings elucidate the gating mechanism of the ATP synthase c-subunit leak channel (ACLC) and suggest how ACLC opening is regulated by cell stress in a CypD-dependent manner.Multiciliated cells (MCCs) in the brain reside in the ependyma and the choroid plexus (CP) epithelia. The CP secretes cerebrospinal fluid that circulates within the ventricular system, driven by ependymal cilia movement. Tumors of the CP are rare primary brain neoplasms mostly found in children. CP tumors exist in three forms CP papilloma (CPP), atypical CPP, and CP carcinoma (CPC). Though CPP and atypical CPP are generally benign and can be resolved by surgery, CPC is a particularly aggressive and little understood cancer with a poor survival rate and a tendency for recurrence and metastasis. In contrast to MCCs in the CP epithelia, CPCs in humans are characterized by solitary cilia, frequent TP53 mutations, and disturbances to multiciliogenesis program directed by the GMNC-MCIDAS transcriptional network. GMNC and MCIDAS are early transcriptional regulators of MCC fate differentiation in diverse tissues. Consistently, components of the GMNC-MCIDAS transcriptional program are expressed during CP development and required for multiciliation in the CP, while CPC driven by deletion of Trp53 and Rb1 in mice exhibits multiciliation defects consequent to deficiencies in the GMNC-MCIDAS program. Previous studies revealed that abnormal NOTCH pathway activation leads to CPP. Here we show that combined defects in NOTCH and Sonic Hedgehog signaling in mice generates tumors that are similar to CPC in humans. NOTCH-driven CP tumors are monociliated, and disruption of the NOTCH complex restores multiciliation and decreases tumor growth. NOTCH suppresses multiciliation in tumor cells by inhibiting the expression of GMNC and MCIDAS, while Gmnc-Mcidas overexpression rescues multiciliation defects and suppresses tumor cell proliferation. Taken together, these findings indicate that reactivation of the GMNC-MCIDAS multiciliogenesis program is critical for inhibiting tumorigenesis in the CP, and it may have therapeutic implications for the treatment of CPC.Schizophrenia is an idiopathic psychiatric disorder with a high degree of polygenicity. Evidence from genetics, single-cell transcriptomics, and pharmacological studies suggest an important, but untested, overlap between genes involved in the etiology of schizophrenia and the cellular mechanisms of action of antipsychotics. To directly compare genes with antipsychotic-induced differential expression to genes involved in schizophrenia, we applied single-cell RNA-sequencing to striatal samples from male C57BL/6 J mice chronically exposed to a typical antipsychotic (haloperidol), an atypical antipsychotic (olanzapine), or placebo. We identified differentially expressed genes in three cell populations identified from the single-cell RNA-sequencing (medium spiny neurons [MSNs], microglia, and astrocytes) and applied multiple analysis pipelines to contextualize these findings, including comparison to GWAS results for schizophrenia. In MSNs in particular, differential expression analysis showed that there was a larger share of differentially expressed genes (DEGs) from mice treated with olanzapine compared with haloperidol. DEGs were enriched in loci implicated by genetic studies of schizophrenia, and we highlighted nine genes with convergent evidence. Pathway analyses of gene expression in MSNs highlighted neuron/synapse development, alternative splicing, and mitochondrial function as particularly engaged by antipsychotics. In microglia, we identified pathways involved in microglial activation and inflammation as part of the antipsychotic response. In conclusion, single-cell RNA sequencing may provide important insights into antipsychotic mechanisms of action and links to findings from psychiatric genomic studies.In June 2019, the Japanese National Health Insurance (NHI) system introduced coverage for two types of tumor genomic profiling (TGP) FoundationOneⓇ CDx (F1) and OncoGuide™ NCC OncoPanel System (NCCOP). TGP sometimes reveals germline variants that are potentially pathogenic as secondary findings (SFs). We conducted a questionnaire-based survey to find out the operational statuses of F1 and NCCOP at institutions where TGP was performed to elucidate issues related to SFs. Responses were received from 97 of 112 institutions (86.6%). As of May 31, 2020, 88 (90.7%) and 78 (80.4%) institutions started performing F1 and NCCOP, respectively. Since F1 only examines tumor samples, germline confirmatory testing is necessary to determine whether they are actually germline pathogenic variants (GPVs). When physicians are obtaining informed consent all but 2.3% of the patients requested SF disclosure. Conversely, when presumed germline pathogenic variants (PGPVs) were detected, 46.2% were not willing to receive confirmatory tests as they wanted to prioritize cancer treatment over SFs investigation, while only 23.3% underwent confirmatory tests. Problems in cancer genomic medicine reported by clinical genetics departments included short-staffing (n = 10), insufficient interdepartmental cooperation (n = 9), inconsistent understanding of genetics among healthcare professionals (n = 8), and low utilization rate of SFs due to lack of insurance coverage for confirmatory tests and post-test health checkups (n = 8). Solutions include; determining the appropriate timing to confirm patient intent on SF disclosure, covering confirmatory tests for PGPVs by the NHI, and establishing cooperation between the oncology and clinical genetics departments.Combined therapy with anti-BRAF plus anti-MEK is currently used as first-line treatment of patients with metastatic melanomas harboring the somatic BRAF V600E mutation. However, the main issue with targeted therapy is the acquisition of tumor cell resistance. In a majority of resistant melanoma cells, the resistant process consists in epithelial-to-mesenchymal transition (EMT). This process called phenotype switching makes melanoma cells more invasive. Its signature is characterized by MITF low, AXL high, and actin cytoskeleton reorganization through RhoA activation. In parallel of this phenotype switching phase, the resistant cells exhibit an anarchic cell proliferation due to hyper-activation of the MAP kinase pathway. We show that a majority of human melanoma overexpress discoidin domain receptor 2 (DDR2) after treatment. The same result was found in resistant cell lines presenting phenotype switching compared to the corresponding sensitive cell lines. We demonstrate that DDR2 inhibition induces a decrease in AXL expression and reduces stress fiber formation in resistant melanoma cell lines.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0