• Rich Caldwell opublikował 1 rok, 3 miesiące temu

    Additionally, GEF inhibited the RIF induction of hPXR-mediated CYP3A4 promoter activity in HepG2 human liver carcinoma cells. The computational modeling of molecular docking predicted that GEF could bind to multiple sites on hPXR including the ligand-binding pocket, allowing for potential as a direct antagonist as well as an allosteric inhibitor. Indeed, GEF bound to the ligand-binding domain of the hPXR in cell-free assays, suggesting that GEF directly interacts with the hPXR. Taken together, our results suggest that GEF, at its clinically relevant therapeutic concentration, can antagonize the hPXR agonist-induced CYP3A4 gene expression in human hepatocytes. Thus, GEF could be a potential candidate for use in combinational chemotherapies to combat hPXR agonist-induced chemoresistance. Further studies are warranted to determine whether GEF has sufficient hPXR inhibitor abilities to overcome the hPXR agonist-induced chemoresistance.This report aims to provide complete knowledge on the polyphenol composition and biological activities of the olive tree. The extraction of the root bark and wood of Olea europaea. L (Chemlali cultivar) was realized by solid-liquid ethanolic extraction, whose analysis was conducted via high-performance liquid chromatography equipped with photodiode array detection and mass spectrometry (HPLC-ESI-DAD and MS/MS). Moreover, radical scavenging and antibacterial activities were determined. The results present a total of 14 phenolic compounds belonging mainly to secoiridoid and flavonoid subclasses. Oleuropein was found to be the most abundant compound at an amount of up to 7000 mg/kg followed by ligstroside and oleuropein derivatives. In addition, we found oleocanthal at a great amount (2115 mg/kg). Higher individual polyphenolic concentrations were recorded in root wood extracts compared to bark ones, except for the flavonoid group. Likewise, the total phenolic compound contents increased in the olive root wood. This trend was reflected in biological activities. In fact, root wood extracts exert more important antioxidant and antibacterial activities than bark extracts due to their high bioactive compounds.Screening of suitable deep eutectic solvents (DESs) as extractants is vitally important in an extraction process. In this study, a multiscale method combining conductor-like screening model for real solvents (COSMO-RS) calculation, experimental validation, and process simulation is presented. This method was applied to screen DESs for extracting m-cresol from cumene. First, the COSMO-RS model was performed to calculate the phase equilibrium of different ternary systems at different feed compositions, thereby prescreening DESs by investigating the effects of DES structures on the extraction performance. Then, the prescreened DESs were studied by extraction experiments to further validate their extraction performance. The extraction mechanism was investigated through FT-IR characterization. Afterward, continuous process simulation by Aspen Plus was employed to identify more promising DESs. The COSMO-RS calculation and experimental results showed that both choline chloride (ChCl)/ethylene glycol (EG) (12) and ChCl/glycerol (Gly) (12) demonstrated a high extraction performance, which were selected as two suitable DESs. Considering the mass purity and recovery ratio of m-cresol and cumene products in industrial applications, as well as the extractant dosage and equipment costs, ChCl/Gly (12) is considered a more promising DES in industrial application.For low-permeability tight sandstone gas reservoirs, multilayer commingled production technology is usually adopted by a large number of production wells. This production method can significantly increase the productivity of a single well, thereby improving the efficiency of gas field development. To have a better understanding of the seepage characteristics of multilayer commingled production of the SXM (ShaXiMiao) Formation tight sandstone gas reservoirs, an indoor physical simulation experiment of commingled injection and separate production using double-pipe parallel long cores was designed under influencing factors such as formation pressures, permeability contrast, and water saturations. Finally, the contribution of high- and low-permeability reservoirs to the total production capacity under different conditions is clarified, which provides a reference for formulating reasonable development strategies for gas reservoirs. Through the experimental study, we found that the recovery degree of the high-permeability formation is higher than that of the low-permeability formation during the depletion production process. The combination of depletion development and water flooding can greatly increase the recovery degree of gas reservoirs. Under the same production pressure difference condition, the higher the formation pressure and the permeability, the higher the production capacity. If the water saturation increases, the production contribution rate of the high-permeability layer gradually increases, and the production contribution rate of the low-permeability layer gradually decreases.A series of 27 new quinoxaline derivatives (N-alkyl-[2-(3-phenyl-quinoxalin-2-ylsulfanyl)]acetamides, methyl-2-[2-(3-phenylquinoxalin-2-ylsulfanyl)-acetylamino]alkanoates, and their corresponding dipeptides) were prepared from 3-phenylquinoxaline-2(1H)-thione based on the chemoselective reaction with soft electrophiles. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to study the efficacy of 27 compounds on cancer cell viability and proliferation. A total of 13 compounds (4a-c, 5, 6, 8c, 9c, 9f, 10a, 10b, 11c, 12b, and 12c) showed inhibitory action on HCT-116 cancer cells and 15 compounds (4a-c, 5, 6, 8c, 9a, 9c, 9f, 9h, 10b, 11c, 12a, 12b, and 12c) showed activity on MCF-7 cancer cells, with compound 10b exhibiting the highest inhibitory action (IC50 1.52 and 2 μg/mL, respectively) on both cell lines. The molecular modeling studies on the human thymidylate synthase (hTS) homodimer interface showed that these compounds are good binders and could selectively inhibit the enzyme by stabilizing its inactive conformation. The study also identified key residues for homodimer binding, which could be used for further optimization and development.In a previous report, we proposed a method for decellularizing porcine aortas by removing lipids from the aortas using liquefied dimethyl ether (DME) instead of the conventional sodium dodecyl sulfate (SDS). This is followed by DNA fragmentation with DNase. In the current work, the physical properties of porcine aortas decellularized using the DME method are evaluated by tensile strength tests. Conventional SDS decellularized aortas are typically swollen, rupture very easily, and have poor elasticity. By contrast, DME-treated samples are found to be less elastic. However, the maximum stress required for rupture is greater than that for the original aorta. These results indicate that decellularization with DME and DNase increases the maximum stress that can be withstood. Reduction of elasticity may derive from the appearance of temporary C=N bonds due to Schiff-base reactions that occur during the lipid removal process by liquefied DME, and methods to avoid this are desirable.Hydrogen peroxide (H2O2) is a unique molecule that is applied in various fields, including energy chemistry, astrophysics, and medicine. H2O2 readily forms clusters with water molecules. In the present study, the reactions of ionized H2O2-water clusters, H2O2 +(H2O) n , after vertical ionization of the parent neutral cluster were investigated using the direct ab initio molecular dynamics (AIMD) method to elucidate the reaction mechanism. Clusters with one to five water molecules, H2O2-(H2O) n (n = 1-5), were examined, and the reaction of [H2O2 +(H2O) n ]ver was tracked from the vertical ionization point to the product state, where [H2O2 +(H2O) n ]ver is the vertical ionization state (hole is localized on H2O2). After ionization, fast proton transfer (PT) from H2O2 + to the water cluster (H2O) n was observed in all clusters. The HOO radical and H3O+(H2O) n-1 were formed as products. The PT reaction proceeds directly without an activation barrier. The PT times for n = 1-5 were calculated to be 36.0, 9.8, 8.3, 7.7, and 7.1 fs, respectively, at the MP2/6-311++G(d,p) level, indicating that PT in these clusters is a very fast process, and the PT time is not dependent on the cluster size (n), except in the case of n = 1, where the PT time was slightly longer because the bond distance and angle of the hydrogen bond in n = 1 were deformed from the standard structure. The reaction mechanism was discussed based on these results.Human serum albumin (HSA), an abundant plasma protein, binds to various ligands, acting as a transporter for numerous endogenous and exogenous substances. Galantamine (GAL), an alkaloid, treats cognitive decline in mild to moderate Alzheimer’s disease and other memory impairments. A vital step in pharmacological profiling involves the interaction of plasma protein with the drugs, and this serves as an essential platform for pharmaceutical industry advancements. This study is carried out to understand the binding mechanism of GAL with HSA using computational and experimental approaches. Molecular docking revealed that GAL preferentially occupies Sudlow’s site I, i.e., binds to subdomain IIIA. The results unveiled that GAL binding does not induce any conformational change in HSA and hence does not compromise the functionality of HSA. Molecular dynamics simulation (250 ns) deciphered the stability of the HSA-GAL complex. We performed the fluorescence binding and isothermal titration calorimetry (ITC) to analyze the actual binding of GAL with HSA. The results suggested that GAL binds to HSA with a significant binding affinity. ITC measurements also delineated thermodynamic parameters associated with the binding of GAL to HSA. Altogether, the present study deciphers the binding mechanism of GAL with HSA.Natural fractures are critical factors that should be considered in shale reservoir evaluation, storage condition analysis, horizontal well design, and fracturing stimulation, which also play a non-negligible role in the occurrence state of shale gas in the reservoir. This paper discussed the influence of fracture development on gas-bearing properties based on the analysis results of core observation, scanning electron microscopy, mineral composition, and gas-bearing properties after the development characteristics of fractures and their longitudinal variation law were clarified. In this way, the development characteristics of organic-rich marine shale fractures in the Longmaxi Formation in the 203 well area of the Luzhou member of the Sichuan Basin and their effects on the gas-bearing properties can be analyzed. The results show that the Longmaxi Formation shale develops shear fractures, extensional fractures of tectonic origin, bedding fractures, dissolution fractures, and abnormally high-pressure fracturesmount of mixed shale of calcareous and siliceous materials. The formation of fractures always expands along the lamellation direction, which has concentrated development members of top and bottom fractures, with the development of horizontal fractures dominated and vertical fractures less developed. Furthermore, a synergistic effect can be found among the total organic carbon (TOC) content, fracture density, and gas-bearing property of the shale in Longmaxi Formation. It is worth noting that a high TOC content and siliceous content are conducive to the formation of microfractures, while the development of fracture contributes to the total gas-bearing property, especially to the increase in free gas content. To be concrete, the free gas content in the fracture development member accounts for more than 55% of the total gas content, thanks to a channel provided by fractures for the desorption of shale gas.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0