• Webster Vangsgaard opublikował 1 rok, 3 miesiące temu

    High-sensitivity differential scanning calorimetry (HS-DSC) thermograms of aqueous poly(N-isopropylacrylamide) (PNIPAM) solutions present a sharp unimodal endotherm that signals the heat-induced dehydration/collapse of the PNIPAM chain. Similarly, α,ω-di-n-octadecyl-PNIPAM (C18-PN-C18) aqueous solutions exhibit a unimodal endotherm. In contrast, aqueous solutions of α,ω-hydrophobically modified PNIPAMs with polycyclic terminal groups, such as pyrenylbutyl (Py-PN-Py), adamantylethyl (Ad-PN-Ad), and azopyridine- (C12-PN-AzPy) moieties, exhibit bimodal thermograms. The origin of the two transitions was probed using microcalorimetry measurements, turbidity tests, variable temperature 1H NMR (VT-NMR) spectroscopy, and 2-dimensional NOESY experiments with solutions of polymers of molar mass (Mn) from 5 to 20 kDa and polymer concentrations of 0.1 to 3.0 mg/mL. The analysis outcome led us to conclude that the difference of the thermograms reflects the distinct self-assembly structures of the polymers. C18-PN-C18 assembles in water in the form of flower micelles held together by a core of tightly packed n-C18 chains. In contrast, polymers end-tagged with azopyridine, pyrenylbutyl, or adamantylethyl form a loose core that allows chain ends to escape from the micelles, to reinsert in them, or to dangle in surrounding water. The predominant low temperature (T1) endotherm, which is insensitive to polymer concentration, corresponds to the dehydration/collapse of PNIPAM chains within the micelles, while the higher temperature (T2) endotherm is attributed to the dehydration of dangling chains and intermicellar bridges. This study of the two phase transitions of telechelic PNIPAM homopolymer highlights the rich variety of morphologies attainable via responsive hydrophobically modified aqueous polymers and may open the way to a variety of practical applications.A key mechanism controlling cardiac function is the electrical activation sequence of the heart’s main pumping chambers termed the ventricles. As such, personalization of the ventricular activation sequences is of pivotal importance for the clinical utility of computational models of cardiac electrophysiology. However, a direct observation of the activation sequence throughout the ventricular volume is virtually impossible. In this study, we report on a novel method for identification of activation sequences from activation maps measured at the outer surface of the heart termed the epicardium. Conceptually, the method attempts to identify the key factors governing the ventricular activation sequence – the timing of earliest activation sites (EAS) and the velocity tensor field within the ventricular walls – from sparse and noisy activation maps sampled from the epicardial surface and fits an Eikonal model to the observations. Regularization methods are first investigated to overcome the severe ill-posedness ofation of activation models.The complexity of molecular dynamics simulations necessitates dimension reduction and coarse-graining techniques to enable tractable computation. The generalized Langevin equation (GLE) describes coarse-grained dynamics in reduced dimensions. In spite of playing a crucial role in non-equilibrium dynamics, the memory kernel of the GLE is often ignored because it is difficult to characterize and expensive to solve. To address these issues, we construct a data-driven rational approximation to the GLE. Building upon previous work leveraging the GLE to simulate simple systems, we extend these results to more complex molecules, whose many degrees of freedom and complicated dynamics require approximation methods. We demonstrate the effectiveness of our approximation by testing it against exact methods and comparing observables such as autocorrelation and transition rates.In this Communication paper we describe how a research-based approach was applied in Israel to support high-school chemistry teachers, who continued to teach using technology during the COVID-19 pandemic. Within the TPACK (technological pedagogical content knowledge) framework for teachers’ knowledge in technological environments, we developed a questionnaire for chemistry teachers, with the goal to reveal the difficulties they encountered, their needs, and their means for sharing their knowledge, materials, and teaching strategies for online teaching. On the basis of the analysis of the collected data, we provided a research-based response that focused on the teachers’ needs when using technology to teach chemistry. Teachers’ needs, in terms of their knowledge, skills, and means of support, which were identified in the research and the activities that were developed in order to address them, are presented. We emphasized the research-based process that was applied to address teachers’ needs during the pandemic.The Teaching Internship is a credit-bearing program comprised of undergraduate near peer instructors (Teaching Interns, or TIs) that offers supplemental assistance for students in the General Chemistry courses. With fellow undergraduates serving as a role model and student-faculty liaison, the benefits of near peer instruction have been well-documented. Because TIs develop a dual role of student and instructor over time, they afford a unique opportunity to explore the middle area of the expert/novice spectrum. Identifying the most influential components of the TI role may allow practitioners to implement these components in other ways for different groups of students. The present work provides a description of the TI model and uses a mixed-methods approach to analyze how the peer leadership role impacted the TIs’ attitudes about learning chemistry. Quantitative results show that TIs do hold predominantly expert-like learning attitudes compared to the General Chemistry population from which they are selected; however, evidence of novice thinking is still observed in some areas. This survey data was then used to inform a qualitative approach. Further analysis indicated that TIs’ responses on survey items were context-dependent, and that peer leadership experiences were associated with expert learning attitudes and appear to be influential in the development of these attitudes. These findings suggest that these factors should be taken into account when drawing general conclusions from survey results.Ethanol and oxygen containing gases are mixed in a T-junction at elevated pressure and then passed into a fused silica microcapillary, located in a heating block. Inside the microcapillary a Taylor flow of alternating liquid and vapor segments is formed. The thermodynamic equilibrium composition of the liquid and vapor segment depends on pressure and temperature. Their compositions are measured inside the microcapillary using in situ Raman spectroscopy. The main results obtained therefrom are temperature-composition (Tx) diagrams at conditions relevant for combustion engines [p = (3 to 8) MPa; T = (303 to 473) K]. Isothermal vapor-liquid equilibria (VLE) data are derived and given in pressure-composition (px) diagrams. The investigation of different gas mixtures containing oxygen and nitrogen allows furthermore the illustration of VLE data at constant pressure and temperature in ternary diagrams. The obtained results are compared to scarce literature data. An equation of state (Peng-Robinson EOS) is furthermore adjusted to the measured results.The potential airborne transmission of COVID-19 has raised significant concerns regarding the safety of musical activities involving wind instruments. However, currently, there is a lack of systematic study and quantitative information of the aerosol generation during these instruments, which is crucial for offering risk assessment and the corresponding mitigation strategies for the reopening of these activities. Collaborating with 15 musicians from the Minnesota Orchestra, we conduct a systematic study of the aerosol generation from a large variety of wind instruments under different music dynamic levels and articulation patterns. We find that the aerosol concentration from different brass and woodwinds exhibits two orders of magnitude variation. Accordingly, we categorize the instruments into low (tuba), intermediate (bassoon, piccolo, flute, bass clarinet, French horn, and clarinet) and high risk (trumpet, bass trombone, and oboe) levels based on a comparison of their aerosol generation with those from normal breathing and speaking. In addition, we observe that the aerosol generation can be affected by the changing dynamic level, articulation pattern, the normal respiratory behaviors of individuals, and even the usage of some special techniques during the instrument play. However, such effects vary substantially for different types of instrument, depending on specific breathing techniques as well as the tube structure and inlet design of the instrument. Overall, our findings can bring insights into the risk assessment of airborne decrease transmission and the corresponding mitigation strategies for various musical activities involving wind instrument plays, including orchestras, community and worship bands, music classes, etc.A recently described DMA designed for high resolution viral particle analysis (Perez-DMA; Perez-Lorenzo et al, 2020) is modified to decrease the relative peak full width at half maximum (FWHM) below previously achieved ≈3.3%. The electrode radii at the outlet slit (R 1 = 1.01 cm; R 2 = 2 cm) and the working length are almost unchanged (L = 114.9 vs. 116 mm). The laminarization trumpet and the radius of the curve merging the trumpet to the working section are both considerably widened to improve gas flow laminarization. DMA evaluation with salt clusters is improved by reducing the flow resistance at the gas outlet, to reach substantially larger sheath gas flow rates Q near 1700 L/min. Tests with tetraheptylammonium bromide clusters with a center rod diverging at 3° demonstrate FWHM less then 2.7%, without indications of performance loss due to turbulence even at 1700 L/min. Correcting these high flow rate data for diffusive broadening reveals a maximal DMA FWHM in the limit of non-diffusing particles and zero sample flow, FWHM∞ = 1.8%. An uncorrected peak width approaching 2% is independently demonstrated at much lower flow rates of sheath gas with two recently described bee virus particle standards having singularly narrow size distributions at mean diameters of 38 and 17 nm. Correcting raw 38 nm particle peak widths for broadening due to diffusion and aerosol to sheath gas flow rate ratio q/Q shows an even more ideal response with FWHM∞ less then 1%, where this value includes nonidealities in the DMA as well as possible lack of monodispersity in the viral particles.The lockdown of schools in Spain to confront the effects of COVID-19 caused an enormous impact at both societal and educational levels. Schools and families had to react rapidly to a new teaching and learning scenario without the benefit of previous planning or government guidelines. In this context, some schools were better able to adapt to the new circumstances than others. Likewise, the structure and size of families’ economic, social and cultural capital produced significant differences in the learning opportunities for children from different backgrounds. This article assesses the impact of the school lockdown on the learning gap between children from different social backgrounds in Catalonia. Based on 35,419 responses to an online survey administered between 26 and 30 March 2020 to families with children aged between 3 and 18, the authors’ analysis shows that learning opportunities varied significantly. Middle-class families were able to maintain higher standards of education quality in a critical context, while children from socially disadvantaged families had few learning opportunities both in terms of time and learning experiences (schoolwork and maintenance of after-school activities).

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0