-
Key Kokholm opublikował 1 rok, 3 miesiące temu
Lateral flow immunoassays (LFIAs) have been developed and used in a wide range of applications, in point-of-care disease diagnoses, environmental safety, and food control. However, in its classical version, it has low sensitivity and can only perform semiquantitative detection, based on colorimetric signals. Over the past decade, surface-enhanced Raman scattering (SERS) tags have been developed in order to decrease the detection limit and enable the quantitative analysis of analytes. Of note, these tags needed new readout systems and signal processing algorithms, while the LFIA design remained unchanged. This review highlights SERS strategies of signal enhancement for LFIAs. The types of labels used, the possible gain in sensitivity from their use, methods of reading and processing the signal, and the prospects for use are discussed.The photocatalytic oxidation of biomass-derived building blocks such as 5-hydroxymethylfurfural (HMF) is a promising reaction for obtaining valuable chemicals and the efficient long-term storage of solar radiation. In this work, we developed innovative TiO2-based materials capable of base-free HMF photo-oxidation in water using simulated solar irradiation. The materials were prepared by combining microemulsion and spray-freeze drying (SFD), resulting in highly porous systems with a large surface area. The effect of titania/silica composition and the presence of gold-copper alloy nanoparticles on the properties of materials as well as photocatalytic performance were evaluated. Among the lab-synthesized photocatalysts, Ti15Si85 SFD and Au3Cu1/Ti15Si85 SFD achieved the higher conversions, while the best selectivity was observed for Au3Cu1/Ti15Si85 SFD. The tests with radical scavengers for both TiO2-m and Au3Cu1/Ti15Si85 SFD suggested that primary species responsible for the selective photo-oxidation of HMF are photo-generated electrons and/or superoxide radicals.Wireless networks are vulnerable to jamming attacks. Jamming in wireless communication becomes a major research problem due to ease in Unmanned Aerial Vehicle (UAV) launching and blocking of communication channels. Jamming is a subset of Denial of Service Attack (DoS) and an intentional interference where the malicious node disrupts the wireless communication by increasing the noise at the receiver node through transmission interference signal towards the target channel. In this work, the considered jammer is a UAV hovering around the target area to block the communication channel between two transceivers. We proposed a three-dimensional (3-D) UAV jamming localization scheme to track and detect the jammer position at each time step by employing a single boundary node observer. For this purpose, we developed two distributed Extended Kalman Filter (EKF) based schemes (1) the Distributed EKF (DEKF) scheme using the information of the received power from the jammer at a single nearby boundary node only and (2) Distance Ratio aided Distributed EKF (DEKF-DR) based scheme utilizing an edge node in addition to a single boundary node. Extensive simulations are conducted in order to evaluate the performance of the proposed distributed algorithms for a 3-D trajectory and compared with that of the conventional Centralized EKF (EKF-Centr) based method (which is also modified for the 3-D scenario). The results show the clear supremacy of the proposed distributed algorithms with much lesser complexity in contrast to the conventional EKF-Centr technique.Metal injection molding (MIM) utilizes a compound consisting of metal powder particles and a binding agent as the feedstock material. The present study combines MIM mold flow simulations with the Taguchi method to clarify the individual and combined effects of the main MIM process parameters on the metal powder concentration distribution in the final sintered product. The results show that the molding process should be performed using a short filling time, a high melt temperature, a low packing pressure, a low mold temperature, and a small gate size. Given these process settings, the powder concentration uniformity and phase separation effect are significantly improved; giving rise to a better aesthetic appearance of the final sintered product and an enhanced mechanical strength.Background The mTORC1 inhibitor everolimus has been approved in combination with the aromatase inhibitor exemestane for the treatment of hormone receptor-positive (HR+) human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (HR+ mBC) progressing on prior therapy with a non-steroidal aromatase inhibitor. To date, no predictive biomarkers of tumor sensitivity/resistance for everolimus-based treatments have been identified. We hypothesized that precocious changes in the Standardized Uptake Volume (∆SUV%), as assessed by 18F-Fluorodeoxyglucosepositron-emission tomography (18F-FDG PET/CT), may be a marker of everolimus efficacy. Methods This was a retrospective study including 31 HR+ HER2- patients treated with everolimus and exemestane in two Italian centers between 2013 and 2018. The objective of the study was to investigate ∆SUV% as a predictive marker of everolimus antitumor efficacy. 18F-FDG PET/CT scans were performed at baseline and after three months of treatment. Patients were %, 95% CI 2.7-41.3% respectively, p = 0.005). As regard as OS, patients with ∆SUV% ≥ 53.8% had longer OS when compared to patients with ∆SUV% less then 53.8% (36 month-OS 82.5% vs. 45.9% vs. p = 0.048). Conclusion We found two precocious ∆SUV% thresholds capable of identifying HR+ HER2-mBC patients, which would achieve long-term benefit or long-term survival during everolimus-exemestane therapy. These results warrant further validation in prospective studies and should be integrated with molecular biomarkers related to tumor metabolism and mTORC1 signaling.A pyrimidine moiety exhibiting a wide range of pharmacological activities has been employed in the design of privileged structures in medicinal chemistry. To prepare libraries of novel heterocyclic compounds with potential biological activities, a series of novel 2-(pyridin-2-yl) pyrimidine derivatives were designed, synthesized and their biological activities were evaluated against immortalized rat hepatic stellate cells (HSC-T6). Fourteen compounds were found to present better anti-fibrotic activities than Pirfenidone and Bipy55’DC. Among them, compounds ethyl 6-(5-(p-tolylcarbamoyl)pyrimidin-2-yl)nicotinate (12m) and ethyl 6-(5-((3,4-difluorophenyl)carbamoyl)pyrimidin-2-yl)nicotinate (12q) show the best activities with IC50 values of 45.69 μM and 45.81 μM, respectively. Furthermore, the study of anti-fibrosis activity was evaluated by Picro-Sirius red staining, hydroxyproline assay and ELISA detection of Collagen type I alpha 1 (COL1A1) protein expression. Our study showed that compounds 12m and 12q effectively inhibited the expression of collagen, and the content of hydroxyproline in cell culture medium in vitro, indicating that compounds 12m and 12q might be developed the novel anti-fibrotic drugs.Surface roughness parameters are an important factor affecting surface wear resistance, but the relevance between the wear resistance and the surface roughness parameters has not been well studied. This paper based on the finite element simulation technology, through the grey incidence analysis (GIA) method to quantitatively study the relevance between the wear amount of per unit sliding distance (ΔVs) and the surface texture roughness parameters under dry friction conditions of the different surface topography. A zeroth order six-variables grey model, GM(0,6), for prediction the wear characteristic parameter ΔVs was established, and the experiment results verified that the prediction model was accurate and reasonable.BackgroundCocculus hirsutus (L.) W.Theob. (Menispermaceae) is a perennial climber distributed mostly in tropical and subtropical areas. The main aim of this article is to collect and analyze the scientific information related to traditional uses, bioactive chemical constituents and pharmacological activities. Methods Scientific information on C. hirsutus was retrieved from the online bibliographic databases (e.g. MEDLINE/PubMed, SciFinder, Web of Science, Google Scholar and Scopus). Information regarding traditional uses was also acquired from secondary resources including books and proceedings. Results Different plant parts of C. hirsutus were reported to be used for the treatment of fever, skin diseases, stomach disorders and urinary diseases. Alkaloids such as jasminitine, hirsutine, cohirsitine and their derivatives along with a few flavonoids, triterpene derivatives and volatile compounds were reported from whole plant or different plant parts. Extracts were evaluated for their antimicrobial, antidiabetic, immunomodulatory and hepatoprotective activities among others. Conclusion Although widely used in traditional medicines, only a few studies have been performed related to chemical constituents. Most of the biological activity evaluations were carried out using in vitro evaluation methods and only a few studies were carried out in animal models. In the future, properly designed in vivo and clinical studies are necessary to evaluate the pharmacological activities of C. hirsutus along with bioassay-guided studies to isolate and identify the active constituents.Salivary secretory disorders are life-disrupting pathologic conditions with a high prevalence, especially in the geriatric population. Both patients and clinicians frequently feel helpless and get frustrated by the currently available therapeutic strategies, which consist mainly of palliative managements. Accordingly, to unravel the underlying mechanisms and to develop effective and curative strategies, several animal models have been developed and introduced. Experimental findings from these models have contributed to answer biological and biomedical questions. This review aims to provide various methodological considerations used for the examination of pathological fundamentals in salivary disorders using animal models and to summarize the obtained findings. The information provided in this review could provide plausible solutions for overcoming salivary disorders and also suggest purpose-specific experimental animal systems.Recently, the bismuth-based (Bi-based) Z-scheme photocatalysts have been paid great attention due to their good solar energy utilization capacity, the high separation rate of their photogenerated hole-electron pairs, and strong redox ability. They are considerably more promising materials than single semiconductors for alleviating the energy crisis and environmental deterioration by efficiently utilizing sunlight to motivate various photocatalytic reactions for energy production and pollutant removal. In this review, the traits and recent research progress of Bi-based semiconductors and recent achievements in the synthesis methods of Bi-based direct Z-scheme heterojunction photocatalysts are explored. The recent photocatalytic applications development of Bi-based Z-scheme heterojunction photocatalysts in environmental pollutants removal and detection, water splitting, CO2 reduction, and air (NOx) purification are also described concisely. The challenges and future perspective in the studies of Bi-based Z-scheme heterojunction photocatalysts are discussed and summarized in the conclusion of this mini review.The backfat of pig carcasses is greater in spring than summer in Australia. The unexplained seasonal variation in carcass backfat creates complications for pig producers in supplying consistent lean carcasses. As a novel explanation, we hypothesised that the increased carcass fatness in spring was due to a greater percentage of born-light progeny from sows that were mated in summer and experienced hot conditions during early gestation. The first part of our experiment compared the birth weight of piglets born to the sows mated in summer (February, the Southern Hemisphere) with those born to sows mated in autumn (May; the Southern Hemisphere), and the second part of the experiment compared the growth performance and carcass fatness of the progeny that were stratified as born-light (0.7-1.1 kg) and born-normal (1.3-1.7 kg) from the sows mated in these two seasons. The results showed that the sows mated in summer experienced hotter conditions during early gestation as evidenced by an increased respiration rate and of interaction between piglet birth weight and sow mating season (Both p less then 0.10). In conclusion, the increased proportion of born-light piglets (0.7-1.1 kg range) from the sows mated in summer contributed to the increased carcass fatness observed in spring.Background non-tuberculous mycobacteria (NTM) infect humans and animals and have a critical confounding effect on the diagnosis of bovine tuberculosis. The Official Mexican Standard (Norma Oficial Mexicana, NOM-ZOO-031-1995) for food safety regulates Mycobacterium bovis in cattle, but not the NTM species. The study’s objective was to isolate and identify the NTM present in condemned bovine lymph nodes in a slaughterhouse, characterize the histological lesions, and correlate bacteriological and microscopic findings with the antemortem tuberculin skin test. Methods from 528 cattle, one or two pooled samples of lymph nodes from each animal were cultured for Mycobacteria spp. and processed for histopathology. Results mycobacteria were isolated from 54/528 (10.2%) of the condemned lymph nodes; 25/54 (46.2%) of these isolates were NTM; 4 bacteriological cultures with fungal contamination were discarded. Granulomatous and pyogranulomatous inflammation were present in 6/21 (28.6%) and 7/21 (33.3%) of the NTM-positive lymph nodes, respectively. The species of NTM associated with granulomatous lymphadenitis were M. scrofulaceum, M. triviale, M. terrae, and M. szulgai, while those causing pyogranulomatous lesions were M. szulgai, M. kansasii, M. phlei, and M. scrofulaceum. Conclusions the NTM infections can cause false-positive results in the tuberculin test because of cross immune reactivity and interference with the postmortem identification of M. bovis in cattle.Accurate prediction of the binding affinity of a protein-ligand complex is essential for efficient and successful rational drug design. Therefore, many binding affinity prediction methods have been developed. In recent years, since deep learning technology has become powerful, it is also implemented to predict affinity. In this work, a new neural network model that predicts the binding affinity of a protein-ligand complex structure is developed. Our model predicts the binding affinity of a complex using the ensemble of multiple independently trained networks that consist of multiple channels of 3-D convolutional neural network layers. Our model was trained using the 3772 protein-ligand complexes from the refined set of the PDBbind-2016 database and tested using the core set of 285 complexes. The benchmark results show that the Pearson correlation coefficient between the predicted binding affinities by our model and the experimental data is 0.827, which is higher than the state-of-the-art binding affinity prediction scoring functions. Additionally, our method ranks the relative binding affinities of possible multiple binders of a protein quite accurately, comparable to the other scoring functions. Last, we measured which structural information is critical for predicting binding affinity and found that the complementarity between the protein and ligand is most important.Vehicular networks provide means to distribute data among intelligent vehicles, increasing their efficiency and the safety of their occupants. While connected to these networks, vehicles have access to various kinds of information shared by other vehicles and road-side units (RSUs). This information includes helpful resources, such as traffic state or remote sensors. An efficient and fast system to get access to this information is important but unproductive if the data are not appropriately structured, accessible, and easy to process. This paper proposes the creation of a semantic distributed network using content-addressed networking and peer-to-peer (P2P) connections. In this open and collaborative network, RSUs and vehicles use ontologies to semantically represent information and facilitate the development of intelligent autonomous agents capable of navigating and processing the shared data. In order to create this P2P network, this paper makes use of the Inter-Planetary File System (IPFS), an open source solution that provides secure, reliable, and efficient content-addressed distributed storage over standard IP networks using the new QUIC protocol. This paper highlights the feasibility of this proposal and compares it with the state-of-the-art. Results show that IPFS is a promising technology that offers a great balance between functionality, performance, and security.Above all, we would like to express our sincere thanks and appreciation for writing your comment on our research […].The aim of this study was to evaluate the therapeutic effects of two different doses (250 and 500 mg/kg) of Morinda citrifolia fruit aqueous extract (AE) in high-fat/high-fructose-fed Swiss mice. The food intake, body weight, serum biochemical, oral glucose tolerance test (OGTT), and enzyme-linked immunosorbent assay (ELISA), as well as histological analyses of the liver, pancreatic, and epididymal adipose tissue, were used to determine the biochemical and histological parameters. The chemical profile of the extract was determined by ultra-fast liquid chromatography-diode array detector-tandem mass spectrometry (UFLC-DAD-MS), and quantitative real-time PCR (qRT-PCR) was used to evaluate the gene expressions involved in the lipid and glucose metabolism, such as peroxisome proliferative-activated receptors-γ (PPAR-γ), -α (PPAR-α), fatty acid synthase (FAS), glucose-6-phosphatase (G6P), sterol regulatory binding protein-1c (SREBP-1c), carbohydrate-responsive element-binding protein (ChREBP), and fetuin-A. Seventeen compounds were tentatively identified, including iridoids, noniosides, and the flavonoid rutin. The higher dose of AE (AE 500 mg/kg) was demonstrated to improve the glucose tolerance; however, both doses did not have effects on the other metabolic and histological parameters. AE at 500 mg/kg downregulated the PPAR-γ, SREBP-1c, and fetuin-A mRNA in the liver and upregulated the PPAR-α mRNA in white adipose tissue, suggesting that the hypoglycemic effects could be associated with the expression of genes involved in de novo lipogenesis.Quinoxaline1,4-di-N-oxides (QdNOs) are a class of important antibacterial drugs of veterinary use, of which the drug resistance mechanism has not yet been clearly explained. This study investigated the molecular mechanism of development of resistance in Escherichia coli (E. coli) under the pressure of sub-inhibitory concentration (sub-MIC) of olaquindox (OLA), a representative QdNOs drug. In vitro challenge of E. coli with 1/100× MIC to 1/2× MIC of OLA showed that the bacteria needed a longer time to develop resistance and could only achieve low to moderate levels of resistance as well as form weak biofilms. The transcriptomic and genomic profiles of the resistant E. coli induced by sub-MIC of OLA demonstrated that genes involved in tricarboxylic acid cycle, oxidation-reduction process, biofilm formation, and efflux pumps were up-regulated, while genes involved in DNA repair and outer membrane porin were down-regulated. Mutation rates were significantly increased in the sub-MIC OLA-treated bacteria and the mutated genes were mainly involved in the oxidation-reduction process, DNA repair, and replication. The SNPs were found in degQ, ks71A, vgrG, bigA, cusA, and DR76-4702 genes, which were covered in both transcriptomic and genomic profiles. This study provides new insights into the resistance mechanism of QdNOs and increases the current data pertaining to the development of bacterial resistance under the stress of antibacterials at sub-MIC concentrations.Cellulose based materials are emerging in the commercial fields and high-end applications, especially in biomedicines. Aminated cellulose derivatives have been extensively used for various applications but limited data are available regarding its cytotoxicity studies for biomedical application. The aim of this study is to synthesize different 6-deoxy-amino-cellulose derivatives from Microcrystalline cellulose (MCC) via tosylation and explore their cytotoxic potential against normal fibroblasts, melanoma and breast cancer. 6-deoxy-6-hydrazide Cellulose (Cell Hyd) 6-deoxy-6-diethylamide Cellulose (Cell DEA) and 6-deoxy-6-diethyltriamine Cellulose (Cell DETA) were prepared and characterized by various technologies like Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), nuclear magnetic resonance spectroscopy (NMR), X-ray diffractogram (XRD), Scanning Electron microscopy (SEM), Elemental Analysis and Zeta potential measurements. Cytotoxicity was evaluated against normal fibroblasts (NIH3T3), mouse skin melanoma (B16F10), human epithelial adenocarcinoma (MDA-MB-231) and human breast adenocarcinoma (MCF-7) cell lines. IC50 values obtained from cytotoxicity assay and live/dead assay images analysis showed MCC was non cytotoxic while Cell Hyd, Cell DEA and Cell DETA exhibited noncytotoxic activity up to 200 μg/mL to normal fibroblast cells NIH3T3, suggesting its safe use in medical fields. The mouse skin melanoma (B16F10) are the most sensitive cells to the cytotoxic effects of Cell Hyd, Cell DEA and Cell DETA, followed by human breast adenocarcinoma (MCF-7). Based on our study, it is suggested that aminated cellulose derivatives could be promising candidates for tissue engineering applications and in cancer inhibiting studies in future.Red fruits and their juices are rich sources of polyphenols, especially anthocyanins. Some studies have shown that such polyphenols can inhibit enzymes of the carbohydrate metabolism, such as α-amylase and α-glucosidase, that indirectly regulate blood sugar levels. The presented study examined the in vitro inhibitory activity against α-amylase and α-glucosidase of various phenolic extracts prepared from direct juices, concentrates, and purees of nine different berries which differ in their anthocyanin and copigment profile. Generally, the extracts with the highest phenolic content-aronia (67.7 ± 3.2 g GAE/100 g; cyanidin 3-galactoside; chlorogenic acid), pomegranate (65.7 ± 7.9 g GAE/100 g; cyanidin 3,5-diglucoside; punicalin), and red grape (59.6 ± 2.5 g GAE/100 g; malvidin 3-glucoside; quercetin 3-glucuronide)-showed also one of the highest inhibitory activities against α-amylase (326.9 ± 75.8 μg/mL; 789.7 ± 220.9 μg/mL; 646.1 ± 81.8 μg/mL) and α-glucosidase (115.6 ± 32.5 μg/mL; 127.8 ± 20.1 μg/mL; 160.6 ± 68.4 μg/mL) and, partially, were even more potent inhibitors than acarbose (441 ± 30 μg/mL; 1439 ± 85 μg/mL). Additionally, the investigation of single anthocyanins and glycosylated flavonoids demonstrated a structure- and size-dependent inhibitory activity. In the future in vivo studies are envisaged.(1) Background Women remain highly vulnerable to numerous risks at work, including labor rights violations, violence and harassment, myriad general and reproductive health risks. The availability of the comprehensive services remains the only hope for these women, yet very little is known about their perspective. (2) Aim To determine the experiences of women regarding the availability of comprehensive women’s health services in the industries of Limpopo (South Africa). (3) Methods The project adopted the qualitative research method to determine the experiences of women related to the availability of comprehensive women’s health services. Non-probability purposive and convenience sampling was used to select 40 women employed in two beverage producing industries. A semi-structured interview with an interview guide was used to collect data that were analyzed using thematic analysis. (4) Results Four themes emerged about the available health services in the two industries; diverse experiences related to availablety reproductive health care and effective interventions.Acrylic pressure-sensitive adhesives (PSAs) are used as fixatives between layers of a display. PSAs’ function is an important factor that determines the performance of the display. Of the various display types available, the touch screen panel (TSP) of smart devices is firmly related to the relative permittivity of the elementals. Therefore, adjusting the relative permittivity of the PSA is indispensable for driving the TSP. Accordingly, selected acrylic pre-polymers were polymerized and the pre-polymer was blended and cross-linked with monomers with different chemical structure to adjust the relative permittivity. The monomers were hexametyldisiloxane (HMDS), N-vinylcaprolactam (NVC), tert-butyl acrylate (TBA), and isooctadecyl acrylate (ISTA). The gel fraction and transmittance as a function of the monomers show a similar result to the pure acrylic PSA. However, the gel fraction value decreased to about 90% and the transmittance decreased to about 85%, due to the immiscibility between nonpolar HMDS and acrylic PSA. On the other hand, the adhesion properties were improved when NVC was added because of the polarity of the nitrogen group. In addition, the relative permittivity of the PSA decreased regardless of the monomer chosen. There was, however, a difference in the optimal content of each monomer, and NVC decreased from 4 phr content to about 3.4 in reducing relative permittivity. Through the above results, it was confirmed that NVC having a nitrogen group is most advantageous in lowering adhesion properties and relative permittivity, and necessitates further research based on the findings.Our group thought the study by Lee and Kim entitled „Hemodynamic Changes in the Carotid Artery after Infusion of Normal Saline Using Computational Fluid Dynamics” was a very elegant method to discern the changes in blood rheology within the carotid sinus after administration of crystalloid […].The utilization of alternative energy substrates to glucose could be beneficial in traumatic brain injury (TBI). Recent clinical data obtained in TBI patients reported valine, β-hydroxyisobutyrate (ibHB) and 2-ketoisovaleric acid (2-KIV) as three of the main predictors of TBI outcome. In particular, higher levels of ibHB, 2-KIV, and valine in cerebral microdialysis (CMD) were associated with better clinical outcome. In this study, we investigate the correlations between circulating and CMD levels of these metabolites. We hypothesized that the liver can metabolize valine and provide a significant amount of intermediate metabolites, which can be further metabolized in the brain. We aimed to assess the metabolism of valine in human-induced pluripotent stem cell (iPSC)-derived astrocytes and HepG2 cells using 13C-labeled substrate to investigate potential avenues for increasing the levels of downstream metabolites of valine via valine supplementation. We observed that 94 ± 12% and 84 ± 16% of ibHB, and 94 ± 12% and 87 ± 15% of 2-KIV, in the medium of HepG2 cells and in iPSC-derived astrocytes, respectively, came directly from valine. Overall, these findings suggest that both ibHB and 2-KIV are produced from valine to a large extent in both cell types, which could be of interest in the design of optimal nutritional interventions aiming at stimulating valine metabolism.Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of children and adolescents. The fusion-positive (FP)-RMS variant expressing chimeric oncoproteins such as PAX3-FOXO1 and PAX7-FOXO1 is at high risk. The fusion negative subgroup, FN-RMS, has a good prognosis when non-metastatic. Despite a multimodal therapeutic approach, FP-RMS and metastatic FN-RMS often show a dismal prognosis with 5-year survival of less than 30%. Therefore, novel targets need to be discovered to develop therapies that halt tumor progression, reducing long-term side effects in young patients. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that regulates focal contacts at the cellular edges. It plays a role in cell motility, survival, and proliferation in response to integrin and growth factor receptors’ activation. FAK is often dysregulated in cancer, being upregulated and/or overactivated in several adult and pediatric tumor types. In RMS, both in vitro and preclinical studies point to a role of FAK in tumor cell motility/invasion and proliferation, which is inhibited by FAK inhibitors. In this review, we summarize the data on FAK expression and modulation in RMS. Moreover, we give an overview of the approaches to inhibit FAK in both preclinical and clinical cancer settings.The use of juvenile and larval fish models has been growing in importance for several fields. Accordingly, the evaluation of behavioural tests that can be applied to larvae and juveniles is becoming increasingly important. We tested medaka at four different ages (1, 10, 30, and 120 dph) in the open field test, one of the most commonly used behavioural assays, to investigate its suitability for larvae and juveniles of this species. We also explored ontogenetic variation in behaviour during this test. On average, adult 120-day-old medaka showed higher locomotor activity in terms of distance moved compared with younger fish. Our analysis suggests that this effect was derived from both quantitative changes in locomotion related to the ontogenetic increase in fish size as well as qualitative changes in two aspects of locomotor behaviour. Specifically, time spent moving was similar between 1- and 10-day-old medaka, but progressively increased with development. In addition, we revealed that adult medaka showed constant levels of activity, whereas younger medaka progressively reduced their activity over the course of the entire experiment. The thigmotaxis behaviour typically used to assess anxiety in the open field test emerged at 120 days post-hatching, even though a difference in the temporal pattern of spatial preference emerged earlier, between 10 and 30 days post-hatching. In conclusion, some measures of the open field test such as total distance moved allow behavioural phenotyping in the medaka of all ages, although with some degree of quantitative and qualitative developmental variation. In contrast, immature medaka appear not to exhibit thigmotactic behaviour.Parkinson’s disease (PD) is a neurodegenerative disorder, caused by, so far, unknown pathogenetic mechanisms. There is no doubt that pro-inflammatory immune-mediated mechanisms are pivotal to the pathogenicity and progression of the disease. In this review, we highlight the binary role of microglia activation in the pathophysiology of the disorder, both neuroprotective and neuromodulatory. We present how the expression of several cytokines implicated in dopaminergic neurons (DA) degeneration could be used as biomarkers for PD. Viral infections have been studied and correlated to the disease progression, usually operating as trigger factors for the inflammatory process. The gut-brain axis and the possible contribution of the peripheral bowel inflammation to neuronal death, mainly dopaminergic neurons, seems to be a main contributor of brain neuroinflammation. The role of the immune system has also been analyzed implicating a-synuclein in the activation of innate and adaptive immunity. We also discuss therapeutic approaches concerning PD and neuroinflammation, which have been studied in experimental and in vitro models and data stemming from epidemiological studies.Fennel is used as an alternative treatment for primary dysmenorrhea. This review aims to evaluate the effectiveness and safety of fennel for reducing pain in primary dysmenorrhea. Twenty databases, including English, Korean, Chinese, Japanese, Iranian, and Spanish databases, were searched from inception to 20 October 2020. All randomized controlled trials (RCTs) investigating the effectiveness of fennel for treating primary dysmenorrhea were considered. Two reviewers conducted the data extraction and risk of bias assessment independently. Any discrepancies were resolved through discussion with a third reviewer. A total of 12 studies were included in this review. The pooled results of seven trials showed that the effect of fennel is similar to that of conventional drug therapies in alleviating pain (n = 502, standardized mean difference (SMD) 0.07, 95% confidence interval(CI) -0.08 to 0.21, p less then 0.37, I2 = 0%). In comparison with placebo, fennel was seen to have favorable effects on reducing pain in primary dysmenorrhea (n = 468, SMD -3.27, 95% CI -5.28 to -1.26, p = 0.001, I2 = 98%). Only three studies assessed adverse events (AEs), and one study reported minor AEs. Although the risk of bias for all the included studies was moderate, potential publication bias was observed due to the presence of a greater number of small studies with favorable effects. This systematic review concludes that fennel is as effective as conventional drug therapies in alleviating pain in primary dysmenorrhea. More studies that include more diverse populations and robust evidence of fennel’s effects will be needed in future research endeavors.Inflammation induced by transcription factors, including Signal Transducers and Activators of Transcription (STATs) and NF-κB, in response to microbial pathogenic infections and ligand dependent receptors stimulation are critical for controlling infections. However, uncontrolled inflammation induced by these transcription factors could lead to immune dysfunction, persistent infection, inflammatory related diseases and the development of cancers. Although the induction of innate immunity and inflammation in response to viral infection is important to control virus replication, its effects can be modulated by lymphotropic viruses including human T-cell leukemia virus type 1 (HTLV-1), Κaposi’s sarcoma herpesvirus (KSHV), and Epstein Barr virus (EBV) during de novo infection as well as latent infection. These lymphotropic viruses persistently activate JAK-STAT and NF-κB pathways. Long-term STAT and NF-κB activation by these viruses leads to the induction of chronic inflammation, which can support the persistence of these viruses and promote virus-mediated cancers. Here, we review how HTLV-1, KSHV and EBV hijack the function of host cell surface molecules (CSMs), which are involved in the regulation of chronic inflammation, innate and adaptive immune responses, cell death and the restoration of tissue homeostasis. Thus, better understanding of CSMs-mediated chronic activation of STATs and NF-κB pathways in lymphotropic virus-infected cells may pave the way for therapeutic intervention in malignancies caused by lymphotropic viruses.Providing safe products and compliance of legal requirements is still a great challenge for food manufacturers regarding microbiological safety, especially in the context of Listeria monocytogenes food contamination. L. monocytogenes is a human pathogen, which, due to the ability of survival and proliferation in preservation conditions such as high salinity, acidity and refrigeration temperatures, is a significant threat to the food industry. Novel methods of elimination of the bacterial pathogen in food products and food processing environments are required. Among emerging technologies, one of the very promising solutions is using bacteriophages as natural control agents. This review focus on the major aspects of phage-based inhibition of L. monocytogenes in aspects of food safety. We describe an overview of foods and technological factors influencing the efficacy of phage use in biocontrol of L. monocytogenes. The most noteworthy are food matrix properties, phage concentration and stability, the time of phage application and product storage temperature. The combined methods, phage immobilization (active packing), pathogen resistance to phages and legislation aspects of antilisterial bacteriophage use in the food industry are also discussed.Aptamers are nucleic acid analogues of antibodies with high affinity to different targets, such as cells, viruses, proteins, inorganic materials, and coenzymes. Empirical approaches allow the design of in vitro aptamers that bind particularly to a target molecule with high affinity and selectivity. Theoretical methods allow significant expansion of the possibilities of aptamer design. In this study, we review theoretical and joint theoretical-experimental studies dedicated to aptamer design and modeling. We consider aptamers with different targets, such as proteins, antibiotics, organophosphates, nucleobases, amino acids, and drugs. During nucleic acid modeling and in silico design, a full set of in silico methods can be applied, such as docking, molecular dynamics (MD), and statistical analysis. The typical modeling workflow starts with structure prediction. Then, docking of target and aptamer is performed. Next, MD simulations are performed, which allows for an evaluation of the stability of aptamer/ligand complexes and determination of the binding energies with higher accuracy. Then, aptamer/ligand interactions are analyzed, and mutations of studied aptamers made. Subsequently, the whole procedure of molecular modeling can be reiterated. Thus, the interactions between aptamers and their ligands are complex and difficult to understand using only experimental approaches. Docking and MD are irreplaceable when aptamers are studied in silico.Brucellosis, globally known bacterial zoonosis, is endemic to Pakistan. B. abortus in bovines, B. melitensis in small ruminants and B. canis in dogs mainly cause this disease. A total of 1821 sera (1196 from sheep and 625 from goats) from animal herds near the Pakistan-Afghanistan border were collected. In parallel testing of sera for anti-Brucella antibodies (B. abortus and B. melitensis) was carried out by RBPT and indirect ELISA. The presence of Brucella DNA in sera was tested by real-time PCR. The overall percentage of seropositive samples was 0.99 (18/1821) by both tests. All positive samples originated from Baluchistan territory which translated into 1.76% (18/1021). None of the positive sera had signals for Brucella DNA and none of sera from goats carried detectable antibodies. Both tests showed an almost perfect agreement with Kappa statistics. The flock size was found to be associated with the presence of anti-Brucella antibodies. The samples of Khyber Pakhtunkhwa (KPK) tested negative in both serological tests and hence were not processed for real-time PCR. The present study shows the presence of anti-Brucella antibodies in sheep in the Baluchistan region of Pakistan. Diagnostic services need to be improved and test and slaughter policies might be implemented for eradication of Brucella infection in these areas. Awareness about the infection is needed at the farmer’s level. Isolation and molecular biology of the isolates could help with understanding the prevailing etiology in a better way.Rhabdomyosarcoma (RMS) is a soft tissue sarcoma most frequently found in children. In RMS, there are two major subtypes, embryonal RMS (ERMS) and alveolar RMS (ARMS). ARMS has the worse prognosis of the two owing to the formation of the chimeric PAX3-FOXO1 gene. A novel therapeutic method is required for treating ARMS. In our previous study, we found that the ectopic expression of chemically modified MIR143-3p#12 (CM-MIR143#12), which is RNase-resistant and shows the highest anti-proliferation activity among the synthesized MIR143 derivatives that were tested, induces significant cell growth suppression by targeting KRAS, AKT, and ERK in colorectal cancer cells. The expression of MIR143-3p in RMS was dramatically downregulated compared with that of normal tissue. Ectopic expression of CM-MIR143#12 in RMS cells resulted in a significant growth inhibitory effect through the induction of apoptosis and autophagy. Interestingly, we found that CM-MIR143#12 also silenced the expression of chimeric PAX3-FOXO1 directly and, using siR-KRAS or siR-AKT, that KRAS networks regulated the expression of PAX3-FOXO1 in ARMS cells. In ERMS harboring NRAS mutation, CM-MIR143#12 silenced mutated NRAS. These findings indicate that CM-MIR143#12 efficiently perturbed the RAS signaling pathway, including the ARMS-specific KRAS/PAX3-FOXO1 networks.
Worldwide the availability to Hormonal Contraceptives (HC) varies from over the counter (OTC) to prescription-only access. In various countries pharmacists are allowed to prescribe HC, although conditions may be different. In Switzerland, HC require a prescription from a physician, although Swiss law allows pharmacists to dispense prescription-only medications in justified exceptional cases without a valid physician’s prescription. This study aimed to identify current dispensing practices for HC in Swiss pharmacies, pharmacists’ knowledge about HC, and their opinion and interest about expanding access to HC.
Web-based survey among Swiss pharmacists.
This survey was completed by 397 registered pharmacists and 331 (83%) were included for analysis. The survey showed that 21% of respondents regularly dispense HC without prescription and that a high number of participants are either very interested (57%,
= 189) or rather interested (33%,
= 110) in extended pharmacy access to HC. The majority did not or rather not support physician’s prescription-only status (77%,
= 256) or OTC availability (94%,
= 310). Furthermore, surveyed pharmacists are willing to train for contraception services (90%,
= 299). According to participants, resistance of physicians is the most relevant barrier to this service (88%,
= 292).
Surveyed pharmacists are interested in extended access to HC.
Surveyed pharmacists are interested in extended access to HC.Despite accumulating preclinical data demonstrating a crucial role of cytotoxic T cell immunity during viral infections, ongoing efforts on developing COVID-19 vaccines are mostly focused on antibodies. In this commentary article, we discuss potential benefits of cytotoxic T cells in providing long-term protection against COVID-19. Further, we propose that gamma-ray irradiation, which is a previously tested inactivation method, may be utilized to prepare an experimental COVID-19 vaccine that can provide balanced immunity involving both B and T cells.The proper distribution of the hormone auxin is essential for plant development. It is channeled by auxin efflux carriers of the PIN family, typically asymmetrically located on the plasma membrane (PM). Several studies demonstrated that some PIN transporters are also located at the endoplasmic reticulum (ER). From the PM-PINs, they differ in a shorter internal hydrophilic loop, which carries the most important structural features required for their subcellular localization, but their biological role is otherwise relatively poorly known. We discuss how ER-PINs take part in maintaining intracellular auxin homeostasis, possibly by modulating the internal levels of IAA; it seems that the exact identity of the metabolites downstream of ER-PINs is not entirely clear as well. We further review the current knowledge about their predicted structure, evolution and localization. Finally, we also summarize their role in plant development.Ex-vivo freshly surgical removed pancreatic ductal adenocarcinoma (PDAC) specimens were assessed using pCLE and then processed for paraffin embeding and histopathological diagnostic in an endeavour to find putative image analysis algorithms that might recognise adenocarcinoma.
Twelve patients diagnosed with PDAC on endoscopic ultrasound and FNA confirmation underwent surgery. Removed samples were sprayed with acriflavine as contrast agent, underwent pCLE with an experimental probe and compared with previous recordings of normal pancreatic tissue. Subsequently, all samples were subjected to cross-sectional histopathology, including surgical resection margins for controls. pCLE records, as well as corespondant cytokeratin-targeted immunohistochemistry images were processed using the same morphological classifiers in the Image ProPlus AMS image analysis software. Specific morphometric classifiers were automatically generated on all images Area, Hole Area (HA), Perimeter, Roundness, Integrated Optical Density (IOD), Fractal Dimension (FD), Ferret max (Fmax), Ferret mean (Fmean), Heterogeneity and Clumpiness.
After histopathological confirmation of adenocarcinoma areas, we have found that the same morphological classifiers could clearly differentiate between tumor and non-tumor areas on both pathology and correspondand pCLE (area, roundness, IOD, ferret and heterogeneity (
< 0.001), perimeter and hole area (
< 0.05).
This pilot study proves that classical morphometrical classifiers can clearly differentiate adenocarcimoma on pCLE data, and the implementation in a live image-analysis algorithm might help in improving the specificity of pCLE in vivo diagnostic.
This pilot study proves that classical morphometrical classifiers can clearly differentiate adenocarcimoma on pCLE data, and the implementation in a live image-analysis algorithm might help in improving the specificity of pCLE in vivo diagnostic.Naturally occurring 210Pb and artificial 137Cs fallouts are widely used as radioactive tracers for the determination of water-induced soil erosion for different time scales equal to 50 and 100 years, respectively. There exist several calibration models useful to convert the variation of the inventory of these radiotracers in cultivated soil compared to its value on non-disturbed soil to a soil erosion rate. The most comprehensive calibration models are based on a mass balance approach. In the present work, a new calibration model is proposed. It consists on the generalization of the mass balance approach to a cultivated soil subject to two successive and continuous periods of cultivation. The proposed model combines 210Pb and 137Cs fallouts for the same time scale by relaxing the constraint on 210Pb fallout from being used for 100 years’ time scale. The model was applied successfully to hypothetical cases and can be used to measure soil erosion rates for practical cases. It is important to note that the proposed model has two main advantages. First, the complementarity between 210Pb and 137Cs fallouts is for the same time scale and not for different time scales, as usually considered and believed in this field. Second, 210Pb fallout is used for time scales less than 100 years. This makes the model useful to estimate soil erosion rates for two successive periods of cultivation. To the best knowledge of the authors, the combination of 210Pb and 137Cs fallouts for the determination of soil erosion rate variation due to change in cultivation practices for the same time scale has never been developed or applied in the past.Breast cancer was one of the first malignancies to benefit from targeted therapy, i.e., treatments directed against specific markers. Inhibitors against HER2 are a significant example and they improved the life expectancy of a large cohort of patients. Research on new biomarkers, therefore, is always current and important. AXL, a member of the TYRO-3, AXL and MER (TAM) subfamily, is, today, considered a predictive and prognostic biomarker in many tumor contexts, primarily breast cancer. Its oncogenic implications make it an ideal target for the development of new pharmacological agents; moreover, its recent role as immune-modulator makes AXL particularly attractive to researchers involved in the study of interactions between cancer and the tumor microenvironment (TME). All these peculiarities characterize AXL as compared to other members of the TAM family. In this review, we will illustrate the biological role played by AXL in breast tumor cells, highlighting its molecular and biological features, its involvement in tumor progression and its implication as a target in ongoing clinical trials.X-chromosomal retinitis pigmentosa (RP) frequently is caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. We evaluated the potential of PTC124 (Ataluren, TranslamaTM) treatment to promote ribosomal read-through of premature termination codons (PTC) in RPGR. Expression constructs in HEK293T cells showed that the efficacy of read-through reagents is higher for UGA than UAA PTCs. We identified the novel hemizygous nonsense mutation c.1154T > A, p.Leu385* (NM_000328.3) causing a UAA PTC in RPGR and generated patient-derived fibroblasts. Immunocytochemistry of serum-starved control fibroblasts showed the RPGR protein in a dot-like expression pattern along the primary cilium. In contrast, RPGR was no longer detectable at the primary cilium in patient-derived cells. Applying PTC124 restored RPGR at the cilium in approximately 8% of patient-derived cells. RT-PCR and Western blot assays verified the pathogenic mechanisms underlying the nonsense variant. Immunofluorescence stainings confirmed the successful PTC124 treatment. Our results showed for the first time that PTC124 induces read-through of PTCs in RPGR and restores the localization of the RPGR protein at the primary cilium in patient-derived cells. These results may provide a promising new treatment option for patients suffering from nonsense mutations in RPGR or other genetic diseases.As the world population has grown, new demands on the production of foods have been met by increased efficiencies in production, from planting and harvesting to processing, packaging and distribution to retail locations. These efficiencies enable rapid intranational and global dissemination of foods, providing longer „face time” for products on retail shelves and allowing consumers to make healthy dietary choices year-round. However, our food production capabilities have outpaced the capacity of traditional detection methods to ensure our foods are safe. Traditional methods for culture-based detection and characterization of microorganisms are time-, labor- and, in some instances, space- and infrastructure-intensive, and are therefore not compatible with current (or future) production and processing realities. New and versatile detection methods requiring fewer overall resources (time, labor, space, equipment, cost, etc.) are needed to transform the throughput and safety dimensions of the food industry. Access to new, user-friendly, and point-of-care testing technologies may help expand the use and ease of testing, allowing stakeholders to leverage the data obtained to reduce their operating risk and health risks to the public. The papers in this Special Issue on „Advances in Foodborne Pathogen Analysis” address critical issues in rapid pathogen analysis, including preanalytical sample preparation, portable and field-capable test methods, the prevalence of antibiotic resistance in zoonotic pathogens and non-bacterial pathogens, such as viruses and protozoa.


