-
Skipper Stevenson opublikował 1 rok, 3 miesiące temu
29; 1.06-1.55) and family instability (OR = 1.73; 1.14-2.62) are associated with an elevated risk of recalcitrant smoking. Education significantly reduces the effect of childhood SES, yet the effect of family instability remains significant even after accounting for life-course mediators. For men, the effect of low SES on recalcitrant smoking is robust (OR = 1.48; 1.10-2.00) even after controlling for potential mediators. There are noteworthy life-course factors that independently affect recalcitrant smoking for both genders, not living with a partner; for women, education; and for men, family problems. CONCLUSIONS The findings can help shape intervention programs that address the underlying factors of recalcitrant smoking. © Society of Behavioral Medicine 2020. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.Guanine-rich, single-stranded DNAs and RNAs that fold to G-quadruplexes (GQs) are able to complex tightly with heme and display strongly enhanced peroxidase activity. Phenolic compounds are particularly good substrates for these oxidative DNAzymes and ribozymes; we recently showed that the use of biotin-tyramide as substrate can lead to efficient GQ self-biotinylation. Such biotinylated GQs are amenable to polymerase chain reaction amplification and should be useful for a relatively non-perturbative investigation of GQs as well as GQ-heme complexes within living cells. Here, we report that in mixed solutions of GQ and duplex DNA in vitro, GQ biotinylation is specifically >104-fold that of the duplex, even in highly concentrated DNA gels; that a three-quartet GQ is tagged by up to four biotins, whose attachment occurs more or less uniformly along the GQ but doesn’t extend significantly into a duplex appended to the GQ. This self-biotinylation can be modulated or even abolished in the presence of strong GQ ligands that compete with heme. Finally, we report strong evidence for the successful use of this methodology for labeling DNA and RNA within live, freshly dissected Drosophila larval salivary glands. © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.Recent advances in genomic technologies have generated data on large-scale protein-DNA interactions and open chromatin regions for many eukaryotic species. How to identify condition-specific functions of transcription factors using these data has become a major challenge in genomic research. To solve this problem, we have developed a method called ConSReg, which provides a novel approach to integrate regulatory genomic data into predictive machine learning models of key regulatory genes. Using Arabidopsis as a model system, we tested our approach to identify regulatory genes in data sets from single cell gene expression and from abiotic stress treatments. Our results showed that ConSReg accurately predicted transcription factors that regulate differentially expressed genes with an average auROC of 0.84, which is 23.5-25% better than enrichment-based approaches. To further validate the performance of ConSReg, we analyzed an independent data set related to plant nitrogen responses. ConSReg provided better rankings of the correct transcription factors in 61.7% of cases, which is three times better than other plant tools. We applied ConSReg to Arabidopsis single cell RNA-seq data, successfully identifying candidate regulatory genes that control cell wall formation. Our methods provide a new approach to define candidate regulatory genes using integrated genomic data in plants. © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.Over 275,000 infants are born very preterm in the US each year. Fifty percent of infants born very preterm will have some degree of neurological dysfunction limiting their ability to keep up with their typically developing peers. Clinical rehabilitation for these high-risk infants has not kept pace with advances in basic science or developmental theory. OBJECTIVE The aim of this project is to study the effect of a physical therapy intervention provided in the first months of life on developmental outcomes of infants born very preterm. Secondary aims are to investigate the impact of intervention timing on the efficacy and impact of the intervention on infants with and without cerebral palsy. DESIGN This study is a multisite longitudinal controlled trial comparing developmental outcomes from infants in the SPEEDI_Late or SPEEDI_Early group to a usual care group. SETTING Urban and rural areas surrounding 2 academic medical centers. PARTICIPANTS There will be 90 preterm infants enrolled in this study born at less then 29 weeks of gestation. INTERVENTION SPEEDI is a developmental intervention provided by a collaboration between a physical therapist and parent to support a child’s motor and cognitive development. MEASUREMENTS The primary outcome measure is the Bayley Scale of Infant and Toddler Development Cognitive and Gross Motor Scaled Scores. Secondary measures include behavioral coding of early problem solving skills, the Gross Motor Function Measure (GMFM), and Test of Infant Motor Performance (TIMP). LIMITATIONS This study is powered to detect group differences between those receiving the study intervention and those receiving usual care. CONCLUSION This study is a step towards understanding the impact of intensive developmental intervention in the first months of life. © The Author(s) 2020. Published by Oxford University Press on behalf of the American Physical Therapy Association. All rights reserved. For permissions, please email journals.permissions@oup.com.Intron detention in precursor RNAs serves to regulate expression of a substantial fraction of genes in eukaryotic genomes. How detained intron (DI) splicing is controlled is poorly understood. Here, we show that a ubiquitous post-translational modification called O-GlcNAc, which is thought to integrate signaling pathways as nutrient conditions fluctuate, controls detained intron splicing. Using specific inhibitors of the enzyme that installs O-GlcNAc (O-GlcNAc transferase, or OGT) and the enzyme that removes O-GlcNAc (O-GlcNAcase, or OGA), we first show that O-GlcNAc regulates splicing of the highly conserved detained introns in OGT and OGA to control mRNA abundance in order to buffer O-GlcNAc changes. We show that OGT and OGA represent two distinct paradigms for how DI splicing can control gene expression. We also show that when DI splicing of the O-GlcNAc-cycling genes fails to restore O-GlcNAc homeostasis, there is a global change in detained intron levels. Strikingly, almost all detained introns are spliced more efficiently when O-GlcNAc levels are low, yet other alternative splicing pathways change minimally. Our results demonstrate that O-GlcNAc controls detained intron splicing to tune system-wide gene expression, providing a means to couple nutrient conditions to the cell’s transcriptional regime. © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.CRISPR-Cas systems comprise diverse adaptive immune systems in prokaryotes whose RNA-directed nucleases have been co-opted for various technologies. Recent efforts have focused on expanding the number of known CRISPR-Cas subtypes to identify nucleases with novel properties. However, the functional diversity of nucleases within each subtype remains poorly explored. Here, we used cell-free transcription-translation systems and human cells to characterize six Cas12a single-effector nucleases from the V-A subtype, including nucleases sharing high sequence identity. While these nucleases readily utilized each other’s guide RNAs, they exhibited distinct PAM profiles and apparent targeting activities that did not track based on phylogeny. In particular, two Cas12a nucleases encoded by Prevotella ihumii (PiCas12a) and Prevotella disiens (PdCas12a) shared over 95% amino-acid identity yet recognized distinct PAM profiles, with PiCas12a but not PdCas12a accommodating multiple G’s in PAM positions -2 through -4 and T in position -1. Mutational analyses transitioning PiCas12a to PdCas12a resulted in PAM profiles distinct from either nuclease, allowing more flexible editing in human cells. Cas12a nucleases therefore can exhibit widely varying properties between otherwise related orthologs, suggesting selective pressure to diversify PAM recognition and supporting expansion of the CRISPR toolbox through ortholog mining and PAM engineering. © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.Human CWC27 is an uncharacterized splicing factor and mutations in its gene are linked to retinal degeneration and other developmental defects. We identify the splicing factor CWC22 as the major CWC27 partner. Both CWC27 and CWC22 are present in published Bact spliceosome structures, but no interacting domains are visible. Here, the structure of a CWC27/CWC22 heterodimer bound to the exon junction complex (EJC) core component eIF4A3 is solved at 3Å-resolution. According to spliceosomal structures, the EJC is recruited in the C complex, once CWC27 has left. Our 3D structure of the eIF4A3/CWC22/CWC27 complex is compatible with the Bact spliceosome structure but not with that of the C complex, where a CWC27 loop would clash with the EJC core subunit Y14. A CWC27/CWC22 building block might thus form an intermediate landing platform for eIF4A3 onto the Bact complex prior to its conversion into C complex. Knock-down of either CWC27 or CWC22 in immortalized retinal pigment epithelial cells affects numerous common genes, indicating that these proteins cooperate, targeting the same pathways. As the most up-regulated genes encode factors involved in inflammation, our findings suggest a possible link to the retinal degeneration associated with CWC27 deficiencies. © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.Transcription-replication (T-R) conflicts are profound threats to genome integrity. However, whilst much is known about the existence of T-R conflicts, our understanding of the genetic and temporal nature of how cells respond to them is poorly established. Here, we address this by characterizing the early cellular response to transient T-R conflicts (TRe). This response specifically requires the DNA recombination repair proteins BLM and BRCA2 as well as a non-canonical monoubiquitylation-independent function of FANCD2. A hallmark of the TRe response is the rapid co-localization of these three DNA repair factors at sites of T-R collisions. We find that the TRe response relies on basal activity of the ATR kinase, yet it does not lead to hyperactivation of this key checkpoint protein. Furthermore, specific abrogation of the TRe response leads to DNA damage in mitosis, and promotes chromosome instability and cell death. Collectively our findings identify a new role for these well-established tumor suppressor proteins at an early stage of the cellular response to conflicts between DNA transcription and replication. © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.Starmerella bombicola very efficiently produces the secondary metabolites sophorolipids (SLs). Their biosynthesis is not-growth associated and highly upregulated in the stationary phase. Despite high industrial and academic interest, the underlying regulation of SL biosynthesis remains unknown. In this paper, potential regulation of SL biosynthesis through the telomere positioning effect (TPE) was investigated, as the SL gene cluster is located adjacent to a telomere. An additional copy of this gene cluster was introduced elsewhere in the genome to investigate if this results in a decoy of regulation. Indeed, for the new strain, the onset of SL production was shifted to the exponential phase. This result was confirmed by RT-qPCR analysis. The TPE effect was further investigated by developing and applying a suitable reporter system for this non-conventional yeast, enabling non-biased comparison of gene expression between the subtelomeric CYP52M1- and the URA3 locus. This was done with a constitutive endogenous promotor (pGAPD) and one of the endogenous promotors of the SL biosynthetic gene cluster (pCYP52M1).


