-
Mcconnell Hickman opublikował 5 miesięcy, 1 tydzień temu
Specifically, we leverage a deep membrane segmentation network and neural morphological physical selection model to select the stable rounded regions in neural images. Then, we combine feature extraction and global optimization of correspondence position to obtain the deformation field of multiple images. Experiments on real and synthetic serial EM section neural image datasets have demonstrated that our proposed method could achieve more reasonable and reliable registration results, outperforming the state-of-the-art approaches in qualitative and quantitative analysis.The study of interbrain coupling in a group of people attending a concert together is a favorable framework to estimate group emotions and more precisely emotional connection between people sharing situations in the same environment. It offers the advantage of studying interactions at the group level. By recording the cerebral activity of people from an audience during a concert using electroencephalography, we previously demonstrated that the higher the emotions and the physically closer the people were, the more the interbrain synchrony (IBS) was enhanced. To further investigate the parameters that shaped inter-brain synchronization in this context, we now focus on the emotional dynamics of the group as a whole by identifying specific moments in the concert that evoked strong or weak emotions, as well as strong or weak emotional cohesion between individuals. We demonstrated that audience interbrain synchrony is mainly associated with experiencing high musical pleasure and that the group emotional cohesion can enhance IBS, but alone is not the major parameter that shapes it in this context.It is a fundamental ability to discriminate incongruent information in daily activity. However, the underlying neural dynamics are still unclear. Using stereoelectroencephalography (SEEG), in this study, we investigated the fine-grained and different states of incongruent information processing in patients with refractory epilepsy who underwent intracranial electrode implantation. All patients performed a delayed match-to-sample paradigm in the sequential pairs of visual stimuli (S1 followed by S2). Participants were asked to discriminate whether the relevant feature of S2 was identical to S1 while ignoring the irrelevant feature. The spatiotemporal cortical responses evoked by different conditions were calculated and compared, respectively, in the context of brain intrinsic functional networks. In total, we obtained SEEG recordings from 241 contacts in gray matter. In the processing of irrelevant incongruent information, the activated brain areas included the superior parietal lobule, supramarginal gyrus, angular gyrus, inferior temporal gyrus, and fusiform gyrus. By comparing the relevant incongruent condition with the congruent condition, the activated brain areas included the middle frontal gyrus, superior temporal gyrus, middle temporal gyrus, posterior superior temporal sulcus, and posterior cingulate cortex. We demonstrated the dynamics of incongruent information processing with high spatiotemporal resolution and suggested that the process of automatic detection of irrelevant incongruent information requires the involvement of local regions and relatively few networks. Meanwhile, controlled discrimination of relevant incongruent information requires the participation of extensive regions and a wide range of nodes in the network. Furthermore, both the frontoparietal control network and default mode network were engaged in the incongruent information processing.Female sex steroids (FSS) can affect the motor system, modulating motor cortex excitability as well as performance in dexterity and coordination tasks. However, it has not yet been explored whether FSS affects the cognitive components of motor behavior. Mu is a sensorimotor rhythm observed by electroencephalography (EEG) in alpha (8-12 Hz) and beta (15-30 Hz) frequency bands in practices such as motor imagery (MI) and action observation (AO). This rhythm represents a window for studying the activity of neural circuits involved in motor cognition. Herein we investigated whether the alpha-mu and beta-mu power in the sensorimotor region (C3 and C4, hypothesis-driven approach) and the alpha and beta power over frontal, parietal, and occipital regions (data-driven approach) are modulated differently in the menstrual, follicular, and luteal phases of menstrual cycles in right-handed dominant women. To do so, these women underwent MI and AO in the three menstrual cycle phases. The spectral activity of the cortical regions for the alpha and beta bands were compared between phases of the menstrual cycle and a correlation analysis was also performed in relation to estrogen and progesterone levels. For the hypothesis-based approach, beta-mu event-related desynchronization (ERD) was significantly stronger in the C3 channel in the follicular phase than in the menstrual and luteal phases. For the data-driven approach, beta ERD during MI was higher in the follicular phase than in the menstrual and luteal phases in the frontal region. These findings suggest the effect of FSS on executive movement control. No effect of menstrual cycle phases was observed in cortical areas investigated during OA, but alpha and beta bands correlated positively with the follicular phase plasma estradiol level. Thus, the attenuation of alpha and beta bands referring to mirror neuron activities appears to be associated with inhibition of cortical activity when estradiol levels are lower, improving cognitive processing of motor action.The treatment of patients suffering from an eating disorder and a comorbid post-traumatic stress disorder is challenging and often leads to poor outcomes. In a randomized control trial, we evaluated to what extent adding Infra-Low Frequency (ILF) neurofeedback could improve symptom reduction within an established inpatient treatment program. In a randomized two-group design, patients suffering from an eating disorder (anorexia nervosa, bulimia nervosa, or binge eating disorder) and comorbid post-traumatic stress disorder (N = 36) were examined while attending an inpatient treatment program in a clinic for psychosomatic disorders. The intervention group received ILF neurofeedback in addition to regular therapy, while the control group received „media-supported relaxation” as a placebo intervention. At the beginning and at the end of their treatment, all participants completed the Eating Disorder Examination-Questionnaire (EDE-Q) as a measure of eating disorder psychopathology and the Impact of Event Scale-Revis and seems to provide a relevant additional benefit in some aspects of symptom reduction. Findings confirm the feasibility of embedding this treatment approach in an inpatient setting and support the case for a larger study for greater statistical power. Clinical Trial Registration „Infra-Low Frequency Neurofeedback training in the treatment of patients with eating disorder and comorbid post-traumatic stress disorder”; German Clinical Trials Registry (https//www.drks.de; Identifier DRKS00027826).
This study aims to explore the effect of integrating routine treatment with Tai Chi Chuan (TCC) intervention on the clinical symptom of patients with Chronic Obstructive Pulmonary Disease (COPD) from clinical and neurological perspectives.
Twenty patients with COPD were recruited for regular treatment combined with 8-week TCC rehabilitative practice. Clinical symptoms were evaluated by Chronic Obstructive Pulmonary Symptom Assessment Scale (CAT) and Modified Dyspnea Scale (mMRC) at baseline and after treatment. Resting-state MRI scan was also performed with multiline T2-weighted echo-planar imaging (EPI) to acquire their functional images before and after the treatment. TCC rehabilitation involved a total of 8 weeks of practice with 90 min per session, three times a week.
After an 8-week integration routine treatment with TCC practice, the patient’s clinical symptoms improved significantly. Imaging analysis showed that COPD patients exhibited decreased Degree of Centrality (DC) in the right inferior frontal gyrus (IFG), right middle frontal gyrus, bilateral cingulate cortex, bilateral precuneus, and right precentral gyrus. Moreover, correlation analysis found that the decreased DC in the right IFG was positively correlated with the CAT improvements.
The routine treatment involving TCC rehabilitation practice could improve the clinical symptoms of patients with COPD. The right IFG might be a key brain region to contribute to the neural mechanism underlying integrative intervention on the clinical symptoms in COPD. These findings provide neurological evidence for treating COPD rehabilitation practice with mind-body practice based on Chinese culture to some extent, which also advances the understanding of the efficacy of TCC as the adjuvant technology from a neuroscience perspective.
[http//www.chictr.org.cn/showproj.aspx?proj=45189], identifier [ChiCTR1900028335].
[http//www.chictr.org.cn/showproj.aspx?proj=45189], identifier [ChiCTR1900028335].Transcranial direct current stimulation (tDCS) over the contralateral primary motor cortex of the target muscle (conventional tDCS) has been described to enhance corticospinal excitability, as measured with transcranial magnetic stimulation. Recently, tDCS targeting the brain regions functionally connected to the contralateral primary motor cortex (motor network tDCS) was reported to enhance corticospinal excitability more than conventional tDCS. We compared the effects of motor network tDCS, 2 mA conventional tDCS, and sham tDCS on corticospinal excitability in 21 healthy participants in a randomized, single-blind within-subject study design. We applied tDCS for 12 min and measured corticospinal excitability with TMS before tDCS and at 0, 15, 30, 45, and 60 min after tDCS. Statistical analysis showed that neither motor network tDCS nor conventional tDCS significantly increased corticospinal excitability relative to sham stimulation. Furthermore, the results did not provide evidence for superiority of motor network tDCS over conventional tDCS. Motor network tDCS seems equally susceptible to the sources of intersubject and intrasubject variability previously observed in response to conventional tDCS.The efficacy of neural repair and regeneration strategies for traumatic brain injury (TBI) treatment is greatly hampered by the harsh brain lesion microenvironment including oxidative stress and hyper-inflammatory response. Functionalized hydrogel with the capability of oxidative stress suppression and neuroinflammation inhibition will greatly contribute to the repairment of TBI. Herein, antioxidant gallic acid-grafted hyaluronic acid (HGA) was combined with hyaluronic acid-tyramine (HT) polymer to develop an injectable hydrogel by dual-enzymatically crosslinking method. The resulting HT/HGA hydrogel is biocompatible and possesses effective scavenging activity against DPPH and hydroxyl radicals. Meanwhile, this hydrogel improved cell viability and reduced intracellular reactive oxygen species (ROS) production under H2O2 insult. The in vivo study showed that in situ injection of HT/HGA hydrogel significantly reduced malondialdehyde (MDA) production and increased glutathione (GSH) expression in lesion area after treatment for 3 or 21 days, which might be associated with the activation of Nrf2/HO-1 pathway.