• Norup Krebs opublikował 5 miesięcy, 1 tydzień temu

    43) and 2.66 times at TRAF3 E303EX (95%CI 0.56-13.12, p = 0.31). Also, DLBCL dogs (CHOP-based treatment) with c-Kit T425= had a poorer prognosis with shorter median overall survival times (OST) than dogs with the wild type. Dogs treated with COP chemotherapy and contained 3-5 variants at SEL1L were associated with decreased median OST. Therefore, this SNP’s lymphoma panel provides valuable information that we can use to outline a prognosis and develop a treatment plan for the targeted therapy of each dog.Bones and teeth are biological archives, but their structure and composition are subjected to alteration overtime due to biological and chemical degradation postmortem, influenced by burial environment and conditions. Nevertheless, organic fraction preservation is mandatory for several archeometric analyses and applications. The mutual protection between biomineral and organic fractions in bones and teeth may lead to a limited diagenetic alteration, promoting a better conservation of the organic fraction. However, the correlation between elemental variations and the presence of organic materials (e.g., collagen) in the same specimen is still unclear. To fill this gap, chemiluminescent (CL) immunochemical imaging analysis has been applied for the first time for collagen localization. Then, Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and CL imaging were combined to investigate the correlation between elemental (i.e., REE, U, Sr, Ba) and collagen distribution. Teeth and bones from various archeological contexts, chronological periods, and characterized by different collagen content were analyzed. Immunochemical analysis revealed a heterogeneous distribution of collagen, especially in highly degraded samples. Subsequently, LA-ICP-MS showed a correlation between the presence of uranium and rare earth elements and areas with low amount of collagen. The innovative integration between the two methods permitted to clarify the mutual relation between elemental variation and collagen preservation overtime, thus contributing to unravel the effects of diagenetic alteration in bones and teeth.Throughout the COVID-19 pandemic, massive sequencing and data sharing efforts enabled the real-time surveillance of novel SARS-CoV-2 strains throughout the world, the results of which provided public health officials with actionable information to prevent the spread of the virus. However, with great sequencing comes great computation, and while cloud computing platforms bring high-performance computing directly into the hands of all who seek it, optimal design and configuration of a cloud compute cluster requires significant system administration expertise. We developed ViReflow, a user-friendly viral consensus sequence reconstruction pipeline enabling rapid analysis of viral sequence datasets leveraging Amazon Web Services (AWS) cloud compute resources and the Reflow system. ViReflow was developed specifically in response to the COVID-19 pandemic, but it is general to any viral pathogen. Importantly, when utilized with sufficient compute resources, ViReflow can trim, map, call variants, and call consensus sequences from amplicon sequence data from 1000 SARS-CoV-2 samples at 1000X depth in  less then  10 min, with no user intervention. ViReflow’s simplicity, flexibility, and scalability make it an ideal tool for viral molecular epidemiological efforts.Dipeptidyl-peptidase-4 inhibitors (DPP4i) have been the most used antidiabetic medications worldwide due to their good safety profiles and tolerability with a low risk of hypoglycemia, however, large cardiovascular outcome trials (CVOTs) have not shown any significant the prognostic superiority. On the contrary, since observational studies have suggested the effects of DPP4i are enhanced some populations, such as Asians and those who without overweight, their prognostic benefit is still under debate. The aim of this study was thus to assess the prognostic impact of DPP4i in patients with both diabetes and coronary artery disease (CAD) who underwent percutaneous coronary intervention (PCI) through the insulin-like growth factor-1 (IGF-1) axis, a substrate of DPP4. This single-center analysis involved consecutive Japanese diabetic patients who underwent PCI for the first time between 2008 and 2018 (n = 885). Primary and secondary endpoints were set as cardiovascular (CV) death and the composite of CV death, non-fatal myocardial infarction and ischemic stroke (3P-MACE). Serum levels of IGF-1 and its main binding protein (insulin-like growth factor binding protein-3 IGFBP-3) were measured. In consequences, unadjusted Kaplan-Meier analyses revealed reduced incidences of CV-death and 3P-MACE by DPP4i, which was particularly enhanced in patients who were not overweight (BMI ≤ 25). Multivariate Cox hazard analyses consistently indicated reduced risks of CV death by DPP4i at PCI (hazard ratio (HR) 0.39, 95% confidence interval (CI) 0.16-0.82, p = 0.01) and 3P-MACE (HR 0.47, 95% CI 0.25-0.84, p = 0.01), respectively. Moreover, elevated IGF-1 activity indicated by the IGF-1/IGFBP-3 ratio was associated with decreased risks of both endpoints and it was significantly higher in patients with DPP4i (p  less then  0.0001). In conclusion, the findings of the present study indicate beneficial effects of DPP4i to improve outcomes in Japanese diabetic patients following PCI, which might be mediated by DPP4-IGF-1 axis.Nonlinear vibrational spectroscopy profits from broadband sources emitting in the molecular fingerprint region. Yet, broadband lasers operating at wavelengths above 7 μm have been lacking, while traditional cascaded parametric frequency down-conversion schemes suffer from exceedingly low conversion efficiencies. Here we present efficient, direct frequency down-conversion of femtosecond 100-kHz, 1.03-μm pulses to the mid-infrared from 7.5 to 13.3 μm in a supercontinuum-seeded, tunable, single-stage optical parametric amplifier based on the wide-bandgap material Cd0.65Hg0.35Ga2S4. The amplifier delivers near transform-limited, few-cycle pulses with an average power > 30 mW at center wavelengths between 8.8 and 10.6 μm, at conversion efficiencies far surpassing that of optical parametric amplification followed by difference-frequency generation or intrapulse difference-frequency generation. The pulse duration at 10.6 μm is 101 fs corresponding to 2.9 optical cycles with a spectral coverage of 760-1160 cm-1. CdxHg1-xGa2S4 is an attractive alternative to LiGaS2 and BaGa4S7 in small-scale, Yb-laser-pumped, few-cycle mid-infrared optical parametric amplifiers and offers a much higher nonlinear figure of merit compared to those materials. Leveraging the inherent spatial variation of composition in CdxHg1-xGa2S4, an approach is proposed to give access to a significant fraction of the molecular fingerprint region using a single crystal at a fixed phase matching angle.Glycolytic and mitochondrial oxidative metabolism, which are two major energy sources in tumors, are potential targets in cancer treatment. Metabolic reprogramming from glycolysis to mitochondrial oxidative metabolism and vice versa is an adaptive strategy with which tumor cells obtain energy to survive and thrive under the compromised conditions of glycolysis and mitochondrial respiration. Developing highly potent, nontoxic, and tumor-selective oxidative phosphorylation (OXPHOS) inhibitors may help advance therapeutic targeting of mitochondrial drugs in cancer. The FDA-approved antimalarial drug atovaquone (ATO), a mitochondrial complex III inhibitor, was repurposed in cancer treatment. Here, we developed a new class of PEGylated mitochondria-targeted ATO (Mito-(PEG)n-ATO). Depending on the PEGylation chain length (n), Mito-PEG-ATO analogs inhibit both mitochondrial complex I- and complex III-induced oxygen consumption in human pancreatic (MiaPaCa-2) and brain (U87MG) cancer cells. Mito-PEG5-ATO is one of the most potent antiproliferative mitochondria-targeted compounds (IC50 = 38 nM) in MiaPaCa-2 cells, and is more effective than other inhibitors of OXPHOS in MiaPaCa-2 and U87MG cells. Furthermore, we show that the combined use of the most potent OXPHOS-targeted inhibitors (Mito-PEG5-ATO) and inhibitors of monocarboxylate transporters (MCT-1 and MCT-4), Krebs cycle redox metabolism, or glutaminolysis will synergistically abrogate tumor cell proliferation. Potential clinical benefits of these combinatorial therapies are discussed.Preterm prelabour rupture of membranes is the leading cause of preterm birth and its associated infant mortality and morbidity. However, its underlying mechanism remains unknown. We utilized two novel biomechanical assessment techniques, ball indentation and Optical Coherence Elastography (OCE), to compare the mechanical properties and behaviours of term (≥ 37 weeks) and preterm (33-36 weeks) human fetal membranes from ruptured and non-ruptured regions. We defined the expression levels of collagen, sulfated glycosaminoglycans (sGAG), matrix metalloproteinase (MMP-9, MMP-13), fibronectin, and interleukin-1β (IL-1β) within membranes by biochemical analysis, immunohistochemical staining and Western blotting, both with and without simulated fetal movement forces on membrane rupture with a new loading system. Preterm membranes showed greater heterogeneity in mechanical properties/behaviours between ruptured and non-ruptured regions compared with their term counterparts (displacement rate 36% vs. 15%; modulus 125% vs. 34%; thickness 93% vs. 30%; collagen content 98% vs. 29%; sGAG 85% vs 25%). Furthermore, simulated fetal movement forces triggered higher MMP-9, MMP-13 and IL-1β expression in preterm than term membranes, while nifedipine attenuated the observed increases in expression. In conclusion, the distinct biomechanical profiles of term and preterm membranes and the abnormal biochemical expression and activation by external forces in preterm membranes may provide insights into mechanisms of preterm rupture of membranes.More than half of metastatic melanoma patients receiving standard therapy fail to achieve a long-term survival due to primary and/or acquired resistance. Tumor cell ability to switch from epithelial to a more aggressive mesenchymal phenotype, attributed with AXLhigh molecular profile in melanoma, has been recently linked to such event, limiting treatment efficacy. In the current study, we investigated the therapeutic potential of the AXL inhibitor (AXLi) BGB324 alone or in combination with the clinically relevant BRAF inhibitor (BRAFi) vemurafenib. Firstly, AXL was shown to be expressed in majority of melanoma lymph node metastases. When treated ex vivo, the largest reduction in cell viability was observed when the two drugs were combined. In addition, a therapeutic benefit of adding AXLi to the BRAF-targeted therapy was observed in pre-clinical AXLhigh melanoma models in vitro and in vivo. When searching for mechanistic insights, AXLi was found to potentiate BRAFi-induced apoptosis, stimulate ferroptosis and inhibit autophagy. Altogether, our findings propose AXLi as a promising treatment in combination with standard therapy to improve therapeutic outcome in metastatic melanoma.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0