-
Bek Stokholm opublikował 1 rok, 3 miesiące temu
The AP-RG and AP-RG-hydrolyzed samples presented a slightly better emulsion stability at pH 6.0 than at pH 2.5. Yet, neither pectin sample was considered having good emulsifying and emulsion-stabilizing properties, indicated by the presence of coalesced and flocculated oil droplets.Fusarium infection is a worldwide agricultural problem of billion dollar proportions globally, and it has increasingly threatened entire regional food supplies. In addition to the toxin deoxynivalenol (DON), Fusarium species express digestive enzymes that degrade starch and protein, affecting the quality of infected grains, especially wheat processing performance which depends largely on gluten proteins. In this study, the impact of Fusarium protease on the functionality of Canada Western Red Spring (CWRS) wheat was assessed by adding Fusarium-damaged kernels (FDK) to a FDK-free base wheat sample. Digestion of beta-casein by extracts of flours, milled from sound and FDK-spiked wheat samples, demonstrated elevated cleavage in FDK-spiked flour extracts as follows N-terminal to lysine (eight-fold), N- and C-terminal to isoleucine (four-fold and three-fold, respectively), N-terminal to tyrosine (three-fold) and C-terminal to arginine at P1′ (five-fold). Comparison of abbreviated (45 min) and standard (135 min) extensigraph test results indicated that desirable increases in dough resistance to extension (Rmax) due to gluten re-polymerization after longer resting were partially to completely counteracted in FDK-spiked flours in a dose-dependent manner. Baking tests confirmed that while loaf volume is similar, proofed dough from FDK-spiked samples caused detectable loaf collapse at 3% FDK. Extensigraph Rmax and Fusarium protease levels were inversely related, and effected by both the extent and severity of infection. While the current FDK tolerances for grading Canadian wheat can effectively control protease damage, prevalence of deoxynivalenol (DON) weak- and non-producing Fusarium strains/species (e.g., F. avenaceum) in some growing regions must be considered to protect functionality if grading is solely based on DON content.The present paper investigates the use of multiple light scattering for the monitoring of milk fermentation. The experiments were performed on milk fermented with different starter concentrations (0.05% to 4.5% (w/w) at temperatures from 36 to 44 °C and in the presence of antibiotics at concentrations up to 100 µg/kg. The fermentation was monitored continuously by using a multiple light scattering technique and simultaneously by a pH meter, a rheometer and a texture analyzer. The backscattering signal recorded by multiple light scattering measurements was correlated with the changes in pH, rheological parameters and firmness of the samples along the fermentation. A gelation time of 120 min was obtained when the highest concentration of starter (4.5%, w/w) and incubation temperature of 44 °C were used. These results were confirmed by the pH, rheological and texture monitoring. The analysis of backscattering spectra allowed the detection of the effect of antibiotic on the gel formation even at low concentrations (1.3 µg/kg). Overall, the results highlighted the advantages of using a multiple light scattering technique as quality control tool for online monitoring of milk fermentation.A biodegradable packaging film containing cellulose nanofibers from olive tree pruning, a by-product of olives production, was obtained using a solvent casting method. Nanocellulose was added to polyvinyl alcohol (PVA) to enhance the technological properties of the composite film as food packaging material. Nanocellulose was obtained from unbleached and bleached pulp through a mechanical and TEMPO pretreatment. Crystalline and chemical structure, surface microstructure, UV and gas barrier, optical, mechanical and antioxidant properties, as well as thermal stability were evaluated. Regarding optical properties, the UV barrier was increased from 6% for the pure PVA film to 50% and 24% for unbleached and bleached nanocellulose, respectively. The antioxidant capacity increased significantly in unbleached mechanical nanocellulose-films (5.3%) compared to pure PVA film (1.7%). In terms of mechanical properties, the tensile strength of the 5% unbleached mechanical nanocellulose films was significantly improved compared to the pure PVA film. Similarly, the 5% nanocellulose films had increased the thermal stability and improved barrier properties, reducing water vapor permeability by 38-59% and presenting an oxygen barrier comparable to aluminum layer and plastic films. Our results support the use of the developed films as a green alternative material for food packaging.The current trend of rising temperatures and sun irradiation associated to climate change is pushing traditional grape-producing areas with a warm climate towards a very accelerated ripening, leading to earlier harvesting dates and grape must with an unbalanced composition. However, this climatic trend could be exploited to produce other types of wine. In this sense, the increase in temperature could be used to produce wines with overripe grapes. In this regard, the aim of this research work is to evaluate the influence of different degrees and techniques of grape over-ripening to produce wines with the presence or absence of its skins during alcoholic fermentation. To this end, a physicochemical characterization of grape musts and wines obtained from overripe grapes and the monitoring of their fermentation has been performed. Over-ripening grapes by sun-drying has been established as a viable technique viability, producing musts and wines with unique physicochemical and sensory characteristics. In view of the above, it is considered that the production of wines from overripe grapes and in the presence or absence of grape skins is a viable approach to make new white wines taking advantage of the conditions imposed by climate change in a warm climate zone and meet the trends and expectations of current wine consumers.The influence of nano-emulsified curcumin (NEC) added to the hair sheep milk, prior to cheese-making, on the chemical composition, lipolysis, and proteolysis of manchego-style cheeses were evaluated throughout 80 days of ripening. The addition of NEC to the milk resulted in cheeses with the same moisture content (42.23%), total protein (23.16%), and water activity (0.969) (p > 0.05). However, it increased the fat and ash levels from 26.82% and 3.64% in B 10 ppm to 30.08% and 3.85% in C 10 ppm, respectively, at the end of the ripening (p less then 0.05). The total phenolic content and antioxidant activity of experimental cheeses increased during ripening, and the fatty acid groups showed significant changes occurred to a greater extent in the first days of ripening (p less then 0.05). The lipolysis increased consistently in all cheeses until day 40 of ripening, to decrease at the end, while proteolysis increased during all ripening time in all samples (p less then 0.05); the addition of NEC did not alter the primary proteolysis of manchego-style cheeses, but it modified secondary proteolysis and lipolysis (p less then 0.05). Principal component analysis was useful for discriminating cheeses according to their chemical composition and classified into four groups according to their ripening time. This research highlights the potential of CNE to fortify dairy foods to enhance their functionality.The cluster of metabolic disorders includes obesity, dyslipidemia, hypertension, and glucose intolerance, increasing the risk of developing cardiovascular diseases and type 2 diabetes. Evolving proofs suggest an essential role of microbiota in human health and disease, including digestion, energy and glucose metabolism, immunomodulation, and brain function. The frequency of overweight is increasing, and the main causes for this are highly processed foods and less active lifestyles. Research is underway to unravel the probable relationship between obesity and intestinal microbiota. Here, we propose a method to understand and elucidate the synergistic function of prebiotics and probiotics in treating obesity. The biomarkers of obesity, such as cholesterol, gut permeability, oxidative stress, bacterial toxins, cytokines, and short-chain fatty acids, were analyzed in Thai obese individuals after being supplemented with a synbiotic preparation containing Lactobacillus paracasei, Bifidobacterium longum, Bifidobacterium breve, inulin, and fructooligosaccharide. The results reveal that the supplementation of synbiotics significantly altered the obesity-associated biomarkers in an appositive way. Further studies are warranted to use synbiotics as an adjuvant therapy for the management of obesity-related health issues.We investigated how the quality of blackberry fruit changes during the ripening period. Since it is difficult to predict picking dates for blackberries, we were interested in how the quality of fully ripe fruit changed depending on the sampling date (from 28 July to 1 September). Blackberries (at full ripeness) were sampled at six weekly intervals and the contents of sugars, vitamin C, organic acids and phenolic components were analysed by high performance liquid chromatography combined with mass spectrometry. The colour parameters, total soluble solids and weight of the fruits were also measured. The results showed that the fruits at the last sampling had a significantly lower fruit weight and higher soluble solids. 'Cacanska Bestrna’ had the highest fruit weight and vitamin C content (11.43 mg/100 g). The main sugars in blackberries were fructose (13.8-33.4 g/kg FW) and glucose (13.0-33.2 g/kg FW). 'Loch Ness’ and 'Navaho’ had a sweeter taste since they had the highest ratio of sugars and acids (S/A approx. 5.8) and 'Smoothstem’ and 'Thornfree’ had the sourest taste, with a ratio of S/A 2.5. Blackberries harvested at the first two samplings had lower anthocyanin contents than fruits from later sampling times. There were no significant differences in the content of flavonols, ellagitannins, flavanols or hydroxycinnamic acids during the ripening period. The content of vitamin C in the fruits did not change among samplings, but the fruits had a higher content of organic acids at the first two or three samplings. The results may be useful for both the processing industry and growers to set quality standards for each variety and to determine the optimal harvest time.The malaxation step, one of the most important phases of the virgin olive oil (VOO) mechanical extraction process involved in the development of the main quality characteristics of the final product, was carried out at a low temperature (18 °C). The rapid control of malaxer temperature was handled with the same chiller as that of the heat exchanger used in a semi-industrial extraction plant. Low temperature was used during the full olive paste kneading process and also for half of this process, which showed that there was a significant impact on the phenolic and volatile contents of VOO. Trials were conducted on three different cultivars (Canino, Moraiolo and Peranzana), and their phenolic and volatile concentrations showed different quantitative and qualitative effects due to the prolonged use of low temperature after the crushing phase, as a function of the different genetic origins of the olives. The process of phenolic compound solubilization into the oily phase was negatively influenced by the use of low temperature during the entire malaxation period for all the cultivars, whereas the volatile fraction showed an improvement in VOO flavor mainly due to the oil extracted from Canino olives.UV-B illumination facilitates aggregation of alpha-lactalbumin (α-LA) by intramolecular disulfide bond cleavage followed by intermolecular thiol-disulfide exchange reactions. However, long term exposure to UV-B illumination may induce undesired oxidative modifications of amino acid residues in the protein. The purpose of this study was to examine the effect of UV-induced aggregation of apo-α-LA (a calcium-depleted form of α-LA) under aerobic and anaerobic conditions and by addition of tryptophan (Trp) as a photosensitizer. The addition of Trp to apo-α-LA illuminated under anaerobic conditions facilitated the highest level of free thiol release and disulfide-mediated aggregation as compared to without addition of Trp under both anaerobic and aerobic conditions. Addition of Trp under aerobic condition resulted in the lowest level of free thiols and disulfide-mediated aggregation and the aerobic conditions caused oxidation of the free Trp with formation of kynurenine and 5-hydroxy-Trp. Minor levels of the Trp oxidation product, 3-hydroxy-kynurenine (2% converted from Trp), was formed in apo-α-LA with added Trp under both aerobic and anaerobic conditions after UV-B treatment.The aim of this work was to assess the antifungal and antioxidant activity of essential oils and ethanolic extracts from distilled solid by-products from aromatic plants (Artemisiadracunculus, Hyssopusofficinalis, Lavandulastoechas, Origanumvulgare and Saturejamontana) against 14 fungi strains isolated from sheep cheese and identified at species level using DNA barcoding based on β-tubulin sequence analysis. In addition, capacity of fungi to produce ochratoxin A, patulin, cyclopiazonic acid and sterigmatocystin was analyzed. Of the isolates, 85.7% belonged to Penicillium (P. commune/biforme, P. crustosum) and 14.3% to Aspergillus (A. puulaauensis and A. jensenii), the first time that these Aspergillus species have been found in sheep’s cheese. All P. commune isolates were producers of cyclopiazonic acid, and the two Aspergillus strains produced sterigmatocystin, but the others did not produce any tested mycotoxin. Among the essential oils tested, oregano, savory and tarragon had a significant antifungal activity against all the isolated strains, but no ethanolic extract showed antifungal activity. By contrast, ethanolic extracts showed great potential as antioxidants. The identification of new molds in cheese will help the dairy industry to know more about those molds affecting the sector, and the use of aromatic plants in the control of fungal spoilage could be a suitable alternative to chemical preservatives used in the agri-food industry.Nowadays, the high demand for village chickens in Malaysia leads to the fraudulent substitution of indigenous chickens with other cheaper counterparts. Discriminating different chicken breeds based on their phenotypic characteristics is one strategy to avoid chicken adulteration. The main objective of this study was to authenticate and group dominant chicken breeds in Malaysia, including commercial chickens (Cobb, Hubbard, DeKalb) and cross-bred village chickens (Ayam Kampung, Akar Putra). The further discrimination of village chickens from underaged colored broilers (UCBs) (Hubbard, Sasso) was performed based on phenotype traits. The results showed that the breed had a significant effect (p less then 0.05) on phenotypic characteristics, while the sex effect was not significant for some characteristics. In the first phase, the most remarkable discriminating factors were abdominal fat weight, breast muscle weight, chest circumference, shank length, and wingspan. However, in the second phase, notable variations in phenotypic characteristics between village chickens and UCBs were not detected. Principal component analysis (PCA) showed the successful separation of village chickens from high-performance breeds (broiler and colored broiler). Nevertheless, there was overlap among observations for Sasso and village chickens, which approved the possible similarities in their phenotypic characteristics. This study showed clear breed clustering, which leads to the chicken authentication based on their phenotypic characteristics.Edible bird’s nest (EBN) produced by Aerodramus fuciphagus has a high demand for nutritional and medicinal application throughout the world. The present study was to evaluate the authentication of a man-made house EBN, which are half cup and stripe-shaped by FTIR. Next, both samples were compared according to their metabolite, nutritional, and mineral composition. The results indicated that the FTIR spectra of both EBN samples were identical and similar to the reference, suggesting the authenticity of the EBN used. The metabolites that contribute to the possible medicinal properties of EBN were found by using GC-MS. The results of the proximate analysis, followed by the standard AOAC method, inferred that both EBN shapes to be rich in crude protein and carbohydrate contents. However, the proximate composition between the half cup and stripe-shaped EBN showed significant differences. Major mineral elements detected were calcium and sodium, and magnesium contents were significantly different between both EBN. Additionally, the half cup and stripe-shaped EBN had a low level of heavy metal content than the maximum regulatory limit as set by the Malaysian Food Act 1983. This study concludes that the nutritional composition varied between the samples and thus suggests that nutrient content should be considered as criteria for the grading requirement of commercialized EBN.Oxidized lipids containing a wide variety of potentially toxic compounds can be ingested through diet. However, their transformations during digestion are little known, despite this knowledge being essential in understanding their impact on human health. Considering this, the in vitro digestion process of highly oxidized soybean oil, containing compounds bearing hydroperoxy, aldehyde, epoxy, keto- and hydroxy groups, among others, is studied by 1H nuclear magnetic resonance. Lipolysis extent, oxidation occurrence and the fate of oxidation products both present in the undigested oil and formed during digestion are analyzed. Furthermore, the effect during digestion of two different ovalbumin proportions on all the aforementioned issues is also addressed. It is proved that polyunsaturated group bioaccessibility is affected by both a decrease in lipolysis and oxidation occurrence during digestion. While hydroperoxide level declines throughout this process, epoxy-compounds, keto-dienes, hydroxy-compounds, furan-derivatives and n-alkanals persist to a great extent or even increase. Conversely, α,β-unsaturated aldehydes, especially the very reactive and toxic oxygenated ones, diminish, although part of them remains in the digestates. While a low ovalbumin proportion hardly affects oil evolution during digestion, at a high level it diminishes oxidation and reduces the concentration of potentially bioaccessible toxic oxidation compounds.Food legumes are at the crossroads of many societal challenges that involve agriculture, such as climate change and food sustainability and security. In this context, pulses have a crucial role in the development of plant-based diets, as they represent a very good source of nutritional components and improve soil fertility, such as by nitrogen fixation through symbiosis with rhizobia. The main contribution to promotion of food legumes in agroecosystems will come from plant breeding, which is guaranteed by the availability of well-characterized genetic resources. Here, we analyze seeds of 25 American and European common bean purified accessions (i.e., lines of single seed descent) for different morphological and compositional quality traits. Significant differences among the accessions and superior genotypes for important nutritional traits are identified, with some lines showing extreme values for more than one trait. Heritability estimates indicate the importance of considering the effects of environmental growth conditions on seed compositional traits. They suggest the need for more phenotypic characterization in different environments over different years to better characterize combined effects of environment and genotype on nutritional trait variations. Finally, adaptation following the introduction and spread of common bean in Europe seems to have affected its nutritional profile. This finding further suggests the relevance of evolutionary studies to guide breeders in the choice of plant genetic resources.Oregano honey is an exceedingly rare and distinct product, not commercially available, produced by bees bred in oregano fields of alpine altitudes at the mountainous area of Epirus, Greece. In ethnic popular medicine, this product is used as a therapeutic in various gastric diseases. To test this hypothesis, 14 strains of Helicobacter pylori (H. pylori), 6 isolated from gastric ulcers and 8 from cases of clinical gastritis, were employed in the present study. The above bacterial strains were exposed to various concentrations (75% v/v, 50% v/v, 25% v/v, 12.5% v/v, and 6% v/v) of 50 oregano honey samples by using the agar well method and the inhibition zones observed around each well were recorded. Although the inhibitory zones of the H. pylori isolated from the gastric ulcers were wide enough (0-34 mm), those strains, in general, appeared more resistant than the other eight (0-58 mm). The same result was observed when the same strains were tested against six antibiotics used in clinical practice. Extracts of oregano honey were prepared by extraction with four different organic solvents. N-hexane and chloroform extracts had the most potent antibacterial action. Finally, pure oregano honey and diethyl ether extracts of honey showed significant inhibitory activity against urease secreted by the pathogen. These results strongly indicate the susceptibility of H. pylori strains to the oregano honey by more than one mode of action. Consequently, this variety of honey seems to have potential therapeutic properties against gastric ulcers and gastritis, thus explaining the preference of the locals towards this traditional remedy.Hypertension, causing cardiovascular disease, stroke, and heart failure, has been a rising health issue worldwide. Black soybeans and adzuki beans have been widely consumed throughout history due to various bioactive components. We evaluated the antihypertensive effects of black soybean and adzuki bean ethanol extracts on blood pressure, renin-angiotensin system (RAS), and aortic lesion in spontaneously hypertensive rats. A group of WKY (normal) and six groups of spontaneously hypertensive rats were administered with saline (SHR), 50 mg/kg of captopril (CAP), 250 and 500 mg/kg of black soybean extracts (BE250 and BE500), 250 and 500 mg/kg of adzuki bean extracts (AE250 and AE500) for eight weeks. BE250, BE500, AE250, and AE500 significantly (p less then 0.05) reduced relative liver weight, AST, ALT, triglyceride, total cholesterol, systolic blood pressure, and angiotensin-converting-enzyme level compared to SHR. The angiotensin II level in AE500 and renin mRNA expression in BE500 and AE500 were significantly (p less then 0.05) decreased compared to SHR. The lumen diameter was significantly (p less then 0.05) reduced in only CAP. Furthermore, systolic and diastolic blood pressure and angiotensin II level in AE500 were lower than those of BE500. These results suggest that AE exhibit more antihypertensive potential than BE in spontaneously hypertensive rats.This narrative review examines the complex relationship that exists between the presence of specific configurations of volatile organic compounds (VOCs) in food and drink products and multisensory flavour perception. Advances in gas chromatography technology and mass spectrometry data analysis mean that it is easier than ever before to identify the unique chemical profile of a particular food or beverage item. Importantly, however, there is simply no one-to-one mapping between the presence of specific VOCs and the flavours that are perceived by the consumer. While the profile of VOCs in a particular product undoubtedly does tightly constrain the space of possible flavour experiences that a taster is likely to have, the gustatory and trigeminal components (i.e., sapid elements) in foods and beverages can also play a significant role in determining the actual flavour experience. Genetic differences add further variation to the range of multisensory flavour experiences that may be elicited by a given configuration of VOCs, while an individual’s prior tasting history has been shown to determine congruency relations (between olfaction and gustation) that, in turn, modulate the degree of oral referral, and ultimately flavour pleasantness, in the case of familiar foods and beverages.Perturbed lipid metabolism leads to ectopic lipid accumulation in tissues, such as the liver, thereby causing nonalcoholic fatty liver disease (NAFLD) and negatively influencing circulating lipid profile-inducing dyslipidemia. Phospholipids (PLs) with special biological activity are used to treat chronic diseases such as cardiovascular and cerebrovascular disease. PLs derived from egg yolk and soya bean have significant antioxidant and lipid-lowering abilities. This study examined the therapeutic effects of them on hyperlipidemia using a high-fructose-fed rat model; lipid metabolism and anti-inflammatory effects were also analyzed. The results showed that both egg yolk and soya bean phospholipids (EPLs and SPLs) reduced liver weight, hepatic TG, and MDA content as well as serum ALT, AST, TBA, and CRP levels (p less then 0.05). The PLs also showed hypolipidemic and anti-inflammatory effects. EPLs and SPLs could inhibit the accumulation of hepatic fatty acids C181N9C, C180, and C226NS of rats fed a high-fat-and-sucrose diet. The intake of EPLs could significantly increase acetylcholine content in the blood and brain tissue. Histological examination showed that PLs intake could ameliorate the damage to liver tissue. This study suggested that EPLs and SPLs had a certain capacity of hypolipidemic and liver protection, and the therapeutic benefits of EPLs tended to be more effective than that of soybean phospholipids.Freshness is considered one of the most important parameters to judge the quality of most fish products. In the current study, the seasonality effect on the freshness profile of different economic fish species was evaluated for the first time, using three different approaches (sensory Quality Index Method (QIM) and European (EC) Scheme; physical Torrymeter (TRM) values; and microbiological analyses Total Viable Counts (TVC) and degradative bacteria). Over a year, individuals of farmed fish Sparus aurata and Dicentrarchus labrax, as well as the wild fish Trachurus trachurus,Scomber colias, and Sardina pilchardus, were sampled seasonally for the evaluation of their freshness profile over 10 days on ice. In general, data showed an increase in QIM values, a decline in TRM, and an increase of spoilage bacteria throughout the storage time, revealing a clear temporal degradation of the quality of the fish. Additionally, some signs of seasonality effect could only be observed for some species. For example, the seabass D. labrax showed lower numbers of degradative bacteria in winter than in the other seasons, suggesting a high potential to be marketed in a fresher condition, especially during that season. On the other hand, S. colias showed higher freshness scores (i.e., higher TRM values in spring and autumn and lower numbers of bacteria in summer) from spring to autumn. However, from the five studied species, S. colias presented the lowest freshness values, indicating a higher fragility of this species. This information is extremely relevant for consumers and retailers that want to invest in higher quality products, as they would thus be able to choose certain species in detriment of others. Additionally, obtained data showed that farmed species reached day 10 of storage time with lower values of QIM and microbial counts (cfu), as well as higher values of TRM, in relation to wild species. These results reinforce the idea that farmed fish can, under proper conditions, present high quality/freshness profile.Regular consumption of adequate quantities of lipids rich in omega-3 fatty acids is claimed to provide a broad spectrum of health benefits, such as inhibiting inflammation, cardiovascular diseases, diabetes, arthritis, and ulcerative colitis. Lipids isolated from many marine sources are a rich source of long-chain polyunsaturated fatty acids (PUFAs) in the omega-3 form which are claimed to have particularly high biological activities. Functional food products designed to enhance human health and wellbeing are increasingly being fortified with these omega-3 PUFAs because of their potential nutritional and health benefits. However, food fortification with PUFAs is challenging because of their low water-solubility, their tendency to rapidly oxidize, and their variable bioavailability. These challenges can be addressed using advanced encapsulation technologies, which typically involve incorporating the omega-3 oils into well-designed colloidal particles fabricated from food-grade ingredients, such as liposomes, emulsion droplets, nanostructured lipid carriers, or microgels. These omega-3-enriched colloidal dispersions can be used in a fluid form or they can be converted into a powdered form using spray-drying, which facilitates their handling and storage, as well as prolonging their shelf life. In this review, we provide an overview of marine-based omega-3 fatty acid sources, discuss their health benefits, highlight the challenges involved with their utilization in functional foods, and present the different encapsulation technologies that can be used to improve their performance.Olive oil is among the most popular supplements of the Mediterranean diet due to its high nutritional value. However, at the same time, because of economical purposes, it is also one of the products most subjected to adulteration. As a result, authenticity is an important issue of concern among authorities. Many analytical techniques, able to detect adulteration of olive oil, to identify its geographical and botanical origin and consequently guarantee its quality and authenticity, have been developed. This review paper discusses the use of infrared and Raman spectroscopy as candidate tools to examine the authenticity of olive oils. It also considers the volatile fraction as a marker to distinguish between different varieties and adulterated olive oils, using SPME combined with gas chromatography technique.Although synthetic bioactive compounds are approved in many countries for food applications, they are becoming less and less welcome by consumers. Therefore, there has been an increasing interest in replacing these synthetic compounds by natural bioactive compounds. These natural compounds can be used as food additives to maintain the food quality, food safety and appeal, and as food supplements or nutraceuticals to correct nutritional deficiencies, maintain a suitable intake of nutrients, or to support physiological functions, respectively. Recent studies reveal that numerous food wastes, particularly fruit and vegetables byproducts, are a good source of bioactive compounds that can be extracted and reintroduced into the food chain as natural food additives or in food matrices for obtaining nutraceuticals and functional foods. This review addresses general questions concerning the use of fruit and vegetables byproducts as new sources of natural bioactive compounds that are being addressed to foods as natural additives and supplements. Those bioactive compounds must follow the legal requirements and evaluations to assess the risks for human health and their toxicity must be considered before being launched into the market. To overcome the potential health risk while increasing the biological activity, stability and biodistribution of the supplements’ technological alternatives have been studied such as encapsulation of bioactive compounds into micro or nanoparticles or nanoemulsions. This will allow enhancing the stability and release along the gastrointestinal tract in a controlled manner into the specific tissues. This review summarizes the valorization path that a bioactive compound recovered from an agro-food waste can face from the moment their potentialities are exhibited until it reaches the final consumer and the safety and toxicity challenges, they may overcome.Optimum conditions for high-quality gelatin recovery from camel skin and its molecular, structural, and rheological characterization were carried out in this study. Increased yield and gel strength were recorded, with an increase in camel skin pretreatment times of 6 to 42 h and 0.50 and 0.75 M-NaOH. Gelatin from skin pretreated with 0.75 and 0.5 M-NaOH for 42 h showed the highest yield (22.60%) and gel strength (365.5 g), respectively. Structural characterization by Fourier transformation infrared spectra, X-ray diffraction, and nuclear magnetic resonance indicated that all gelatins possessed major peaks in the amide region, and diffraction peaks around 22° were basically amorphous. The temperatures for gelling and melting ranged from 20.9 °C to 25.8 °C and 27.34 °C to 30.49 °C. Microstructure revealed loose network with more voids in gelatin from skin pretreated with 0.5 and 0.75 M-NaOH for 6 h, while a highly cross-linked network and less voids were observed in those pretreated with 0.75 M-NaOH for 24 h and 0.5 M-NaOH for 42 h. The results reveal that great potential exists in producing halal gelatin with excellent quality and functionality from camel skin.This review focused on the historical, marketing, technological, and microbiological characteristics of artisanal Brazilian cheese. Brazilian cheese production was introduced and developed from the influence of immigrants considering the combination of climate, races of the animals, quality and specificity of milk, technological cheese-making processes and environmental microbiology, among other factors. It resulted in cheese products with specific physicochemical, microbiological, and sensory quality, which represent the heritage and identities of the different Brazilian regions. The production of artisanal cheese increased in many Brazilian regions, mainly in the southeast, especially due to the traditional production and innovative development of new varieties of cheese. The microbiological quality and safety of raw-milk artisanal cheese continues to be a concern and many studies have been focusing on this matter. Special attention needs to be given to the cheeses produced by raw milk, since numerous reports raised concerns related to their microbiological safety. This fact requires attention and the implementation of strict hygiene practices on the production and commercialization, besides appropriate governmental regulations and control. However, more studies on the relationship between technological processes and microbiological properties, which results in a superior culinary quality and safety of artisanal Brazilian cheeses, are needed.The development of volatile compounds and their precursors during the dehydration process of membrane-clarified sugarcane juice to non-centrifugal sugar (NCS) was investigated. Head-space solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) coupled with chemometrics was employed to assess the differences at the various stages of the dehydration process. A total of 111 volatile compounds were identified, among which 57 were endogenous compounds from sugarcane juice and displayed an attenuated abundance in the first 30 min. Typical oxygen and nitrogen heterocyclic compounds, including furans and pyrazines, and aldehydes derived were found to be the main volatiles contributing to the formation of NCS characteristic aroma, with phenols, alcohols, esters, acids, and sulfur compounds as supplementary odor. Free amino acids and reducing sugars were identified as important precursors for the aroma development process. The low temperature (90-108 °C) and micro vacuum condition (-0.03 MPa) approach used in this study could be an alternative option for the manufacture of NCS.Insect-based products are novel foods (NF) that merit careful study. For this reason, in this work a method has been developed for the simultaneous analysis of four food processing contaminants (FPC), acrylamide (AA), 5-hydroxymethylfurfural, (HMF), 5-methylfurfural (MF) and furfural (F), in insect-based products (bars, crackers and flours) by high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (HPLC-QqQ-MS/MS). The method consisted of a solid-liquid extraction (SLE) with acidified water, followed by solid-phase extraction (SPE), using 100 mg of a sorbent based on mesostructured silica with a large pore functionalized with amino groups (SBA-15-LP-NH2). The analytical method was properly optimized and validated in a representative bar sample of pineapple & coconut with cricket flour (Ins-B-Pine-Coco) showing good accuracy, with recoveries ranging from 70-101% for the four analytes and adequate precision (RSD less then 9%). Good linearity (R2 ≥ 0.995) and low method quantification limits for AA (between 1.3-1.4 µg/g), F (between 7.9-8.8 µg/g), MF (between 3.1-6.5 µg/g) and HMF (between 1.5-3.3 µg/g) were also obtained in all samples studied. The proposed method was successfully applied in eleven insect-based foods. Results revealed that insect-based bars can be a good alternative to traditional cereal bars to reduce dietary exposure to HMF; but, in order to reduce the exposure to AA, alternative formulations must be evaluated in the design of innovative insect-based crackers.Meat is highly nutritious and contributes with several essential nutrients which are difficult to obtain in the right amounts from other food sources. Industrially processed meat contains preservatives including salts, possibly exerting negative effects on health. During maturation, some processed meat products develop a specific microbiota, forming probiotic metabolites with physiological and biological effects yet unidentified, while the concentration of nutrients also increases. Meat is a source of saturated fatty acids, and current WHO nutrition recommendations advise limiting saturated fat to less than ten percent of total energy consumption. Recent meta-analyses of both observational and randomized controlled trials do not support any effect of saturated fat on cardiovascular disease or diabetes. The current evidence regarding the effect of meat consumption on health is potentially confounded, and there is a need for sufficiently powered high-quality trials assessing the health effects of meat consumption. Future studies should include biomarkers of meat intake, identify metabolic pathways and include detailed study of fermented and other processed meats and their potential of increasing nutrient availability and metabolic effects of compounds.Sugarcane honey (SCH) is a syrup produced on Madeira Island and recognized by its unique aroma, a complex attribute of quality with an important influence on the final consumer’s acceptance of the product, and determined by a complex mixture of a large number of volatile organic compounds (VOCs) generated during its traditional making process and storage. Therefore, the purpose of this study was to establish the volatile profile of genuine SCH produced by a regional certified producer for seven years and compare it with syrups from non-certified regional producers and with producers from different geographical regions (Spain, Egypt, Brazil and Australia), as a powerful strategy to define the volatomic fingerprint of SCH. Different volatile profiles were recognized for all samples, with 166 VOCs being identified belonging to different chemical classes, including furans, ketones, carboxylic acids, aldehydes and alcohols. Chemometric analysis allowed (i) the differentiation between all syrups, being more pronounced between SCH and other syrups; and (ii) the identification of 32 VOCs as potential markers for the traceability and authenticity of SCH on the global market.Pea protein isolate (PPI), as an emerging plant protein, has gradually aroused the attention of the public, but the PPI, especially high-concentration PPI’s low stability in the acidic aqueous system, was still a problem that limited its application. In this research, we investigated the interactions between relatively high concentrations of PPI (3.0%) and carboxymethylcellulose (CMC, 0-0.5%) in neutral and acid aqueous systems to explore the change of the phase behavior and stability of PPI as affected by CMC. It showed that the stability of PPI in the aqueous systems strongly depended on the CMC concentration, especially at the acidic aqueous systems. At neutral aqueous system, a certain amount addition of CMC into the PPI caused serious phase separation. While stable PPI solutions can be obtained at a narrow region around pH 4.5 to 5.5 by adding different amounts of CMC. The enhancement in the electrostatic repulsion and steric hindrance between the newly formed PPI-CMC biopolymers, as well as the increase in bulk viscosity with the adding of CMC at pH 4.5, contributed to the higher stability of PPI in acidic aqueous systems.We determined whether oral consumption of Aronia, red ginseng, shiitake mushroom, and nattokinase mixture (3.4 4.1 2.4 0.1 w/w; AGM) improved glucose metabolism and insulin resistance in prediabetic adults in a 12-week randomized, double-blinded clinical trial. Participants with fasting serum glucose concentrations of 100-140 mg/dL were recruited and randomly assigned to an AGM or placebo group. Participants of the AGM group (n = 40) were given an AGM granule containing 4 g of freeze-dried Aronia, red ginseng, shiitake mushroom, and nattokinase (3.4 4.1 2.4 0.1 w/w) twice daily for 12 weeks, and the placebo group participants (n = 40) were provided with corn starch granules identical in appearance, weight, and flavor for 12 weeks. Serum glucose and insulin concentrations were measured during oral-glucose tolerance tests (OGTT) after administering 75 g of glucose in a fasted state. HOMA-IR, liver damage, and inflammation indices were determined, and safety parameters and adverse reactions were assessed. As det In conclusion, AGM possibly improves insulin sensitivity and β-cell function and reduces liver damage and inflammation in prediabetic adults.Casein phosphopeptide (CPP) has been widely used as micronutrient supplementation for certain populations. However, its solubility performance is far from satisfying. In this work, instant CPP powders with micropore structures were fabricated by supercritical fluid-assisted atomization (SAA) using supercritical CO2 fluid (SC-CO2) as an atomizing agent. The effects of the processing parameters (temperature, time, and pressure) on SC-CO2 absorption rate and dissolution rate were systematically evaluated and studied. The viscosity of the CPP solution increased with increased pressure of SC-CO2 as pressure increased its solubility. The processing conditions are optimized as follows 40 °C, 40 min, and 8.27 MPa, with an SC-CO2 absorption rate of about 8 wt.%. The dissolution time of the SAA-CPP powders was significantly decreased from 1800 s to 54 s at room temperature, due to the micropore structures and almost 10 times increase in the specific surface area of SAA-CPP. The bioactivities of the instant SAA-CPP, especially the calcium-binding capacity, were also evaluated and showed no observable difference. Among the four CPPs prepared in different ways in this work, SAA-CPP had better dissolution performance. The results show that SAA technology is a promising way to prepare instant polypeptide powders.Metabolic syndrome is a severe public health issue characterized by multiple metabolic disturbances. Current treatments prescribe a particular drug for each of them, producing multiple side effects. As a first step towards a more integral approach, we applied our recently described methodology to design single proteins, based in the Concanavalin B scaffold (1CNV), that contain several bioactive peptides (BPs), including antioxidant and lipid-lowering activities as well as inhibitors of dipeptidyl peptidase IV (DPPIV) and the angiotensin converting enzyme. Modified Concanavalin (CNV44), the designed protein that showed the best in silico properties, was expressed in high yields in E. coli and purified to homogeneity. After in vitro digestion with gastrointestinal enzymes, all the biological activities tested where higher in CNV44 when compared to the non-modified protein 1CNV, or to other previous reports. The results presented here represent the first in vitro evidence of a modified protein with the potential to treat metabolic syndrome and open the venue for the design of proteins to treat other non-communicable diseases.Previous studies found that the collagen hydrolysates of fish skin have antiplatelet activity, but this component remained unknown. In this study, eleven peptides were isolated and identified in the absorbates of Alcalase-hydrolysates and Protamex®-hydrolysates of skin collagen of H. Molitrix by reverse-phase C18 column and HPLC-MS/MS. Nine of them contained a Pro-Gly (PG) or Hyp-Gly (OG) sequence and significantly inhibited ADP-induced platelet aggregation in vitro, which suggested that the PG(OG) sequence is the core sequence of collagen peptides with antiplatelet activity. Among them, OGSA has the strongest inhibiting activities against ADP-induced platelet aggregation in vitro (IC50 = 0.63 mM), and OGSA inhibited the thrombus formation in rats at a dose of 200 μM/kg.bw with no risk of bleeding. The molecular docking results implied that the OG-containing peptides might target the P2Y12 receptor and form hydrogen bonds with the key sites Cys97, Ser101, and Lys179. As the sequence PG(OG) is abundant in the collagen amino acid sequence of H. Molitrix, the collagen hydrolysates of H. Molitrix might have great potential for being developed as dietary supplements to prevent cardiovascular diseases in the future.The aim of this study was to determine whether the properties of the native oat grain or non-heat-treated groats (laboratory-scale dehulling) can be used to predict the quality of the industrially produced oat flour produced from heat-treated groats. Quality properties such as the color, hectoliter weight, thousand seed weight and hull content of Finnish native grains (n = 30) were determined. Furthermore, the relationship between the properties of the native grains and the chemical composition of the raw oat materials before and after the milling process were studied. A significant relationship (p less then 0.01) was observed between the thousand seed weight of the native oat groats and the chemical composition of the industrially produced oat flour. Furthermore, the protein content of the native grains measured by NIT correlated with the chemical composition of the oat flours. These results suggest that the properties of oat flour produced on an industrial scale, including heat treatment, could be predicted based on the properties of native oat grains.Sensory changes during shelf-life of oils have been mostly studied by descriptive methods, while consumer-based approaches have been poorly explored. This study assessed the variations in consumers’ liking and sensory perception of extra virgin olive oil (EVOO) and olive oil (OO) packaged in glass, polyethylene terephthalate and tinplate. After 2, 10 and 19 months of storage, oil perception was investigated with consumers (n = 50) performing both a liking test and a check-all-that-apply (CATA) test. No significant effect of the packaging material on consumers’ response was found, whereas storage time negatively affected the sensory properties of and acceptability of OOs and EVOOs from the 10th month of storage. The CATA test results revealed the sensory changes in oils over 19 months, mainly described as a decrease in pungency for EVOO and a decrease in herbaceous and ripe fruitiness in OO. The CATA technique combined with the liking test allowed the drivers of liking („olive” for OO and „green fruitiness” for EVOO) and disliking („bitter” and „pungent” for EVOO) to be identified. In conclusion, the sensory approach based both on CATA technique and liking test seems promising as a rapid tool to evaluate the changes in sensory properties perceivable during the shelf-life of oils.Flavour is an important quality trait of food and beverages. As the demand for natural aromas increases and the cost of raw materials go up, so does the potential for economically motivated adulteration. In this study, gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) analysis of volatile fruit compounds, sampled using headspace-solid phase microextraction (HS-SPME), is used as a tool to differentiate between synthetic and naturally produced volatile aroma compounds (VOCs). The result is an extensive stable isotope database (IsoVoc-Isotope Volatile organic compounds) consisting of 39 authentic flavour compounds with well-defined origin apple (148), strawberry (33), raspberry (12), pear (9), blueberry (7), and sour cherry (4) samples. Synthetically derived VOCs (48) were also characterised. Comparing isotope ratios of volatile compounds between distillates and fresh apples and strawberries proved the suitability of using fresh samples to create a database covering the natural variability in δ13C values and range of VOCs. In total, 25 aroma compounds were identified and used to test 33 flavoured commercial products to evaluate the usefulness of the IsoVoc database for fruit flavour authenticity studies. The results revealed the possible falsification for several fruit aroma compounds.The purpose of this study was to evaluate the hydrocolloids-protein mixture as a fat replacer in sugar-free low-fat muffin cakes. In this study, a hydrocolloids mixture including konjac and guar gums and soy protein isolate (SPI) was applied to the cake. The combination of gums and SPI was named as mixture of stabilizers (MOS), and the treatments were designed using Design-Expert software and the response surface methodology (RSM) in order to optimize and reduce the oil content of muffin cakes by replacing it with MOS. Evaluation of treatments characteristics were investigated on days 1 and 15 of their production. The dependent variables were moisture content, water activity, specific volume, porosity, hardness, cohesiveness, springiness, chewiness and crumb color of cakes. The results show that increasing the percentage of MOS has positive effects on the final products in comparison to oil. In other words, an increase in the MOS content resulted in an increase in the moisture content, water activity, specific volume, height, springiness, cohesiveness, chewiness and L* (lightness) values, but negative effect on hardness, a* (redness) and b* (yellowness) values. As a result of optimizing using RSM, the usage of 4.08% oil and 0.31% MOS resulted in a 62.9% reduction in oil content in comparison with the control sample. The panelists assigned the lowest score to hardness and crumb color and the highest score to overall acceptability and cohesiveness to the optimized muffin.


