-
Boone Lorentsen opublikował 1 rok, 3 miesiące temu
BACKGROUND Lipid traits have been inconsistently linked to risk of non-Hodgkin lymphoma (NHL). We examined the association of genetically predicted lipid traits with risk of diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and marginal zone lymphoma (MZL) using Mendelian randomization (MR) analysis. METHODS Genome-wide association study data from the InterLymph Consortium were available for 2,661 DLBCLs, 2,179 CLLs, 2,142 FLs, 824 MZLs, and 6,221 controls. SNPs associated (P less then 5 × 10-8) with high-density lipoprotein (HDL, n = 164), low-density lipoprotein (LDL, n = 137), total cholesterol (TC, n = 161), and triglycerides (TG, n = 123) were used as instrumental variables (IV), explaining 14.6%, 27.7%, 16.8%, and 12.8% of phenotypic variation, respectively. Associations between each lipid trait and NHL subtype were calculated using the MR inverse variance-weighted method, estimating odds ratios (OR) per standard deviation and 95% confidence intervals (CI). RESULTS HDL was positively associated with DLBCL (OR = 1.14; 95% CI, 1.00-1.30) and MZL (OR = 1.09; 95% CI, 1.01-1.18), while TG was inversely associated with MZL risk (OR = 0.90; 95% CI, 0.83-0.99), all at nominal significance (P less then 0.05). A positive trend was observed for HDL with FL risk (OR = 1.08; 95% CI, 0.99-1.19; P = 0.087). No associations were noteworthy after adjusting for multiple testing. CONCLUSIONS We did not find evidence of a clear or strong association of these lipid traits with the most common NHL subtypes. While these IVs have been previously linked to other cancers, our findings do not support any causal associations with these NHL subtypes. IMPACT Our results suggest that prior reported inverse associations of lipid traits are not likely to be causal and could represent reverse causality or confounding. find more ©2020 American Association for Cancer Research.Reliance on rodents for understanding pancreatic genetics, development and islet function could limit progress in developing interventions for human diseases like diabetes mellitus. Similarities of pancreas morphology and function suggest that porcine and human pancreas developmental biology may have useful homologies. However, little is known about pig pancreas development. To fill this knowledge gap, we investigated fetal and neonatal pig pancreas at multiple, crucial developmental stages using modern experimental approaches. Purification of islet β-, α- and δ-cells followed by transcriptome analysis (RNA-Seq) and immunohistology identified cell- and stage-specific regulation, and revealed that pig and human islet cells share characteristic features not observed in mice. link2 Morphometric analysis also revealed endocrine cell allocation and architectural similarities between pig and human islets. Our analysis unveiled scores of signaling pathways linked to native islet β-cell functional maturation, including evidence of fetal α-cell GLP-1 production and signaling to β-cells. Thus, the findings and resources detailed here show how pig pancreatic islet studies complement other systems for understanding the developmental programs that generate functional islet cells, and that are relevant to human pancreatic diseases. © 2020. Published by The Company of Biologists Ltd.Aerial organs of plants being highly prone to local injuries, require tissue restoration to ensure their survival. link3 However, knowledge of the underlying mechanism is sparse. In this study, we mimicked natural injuries in growing leaf and stem to study the reunion between mechanically disconnected tissues. We show that PLETHORA(PLT)/ AINTEGUMENTA(ANT) genes, which encodes stem cell promoting factors, are activated and contribute to vascular regeneration in response to these injuries. PLT proteins bind to and activate the CUC2 promoter. Both PLT and CUC2 regulate the transcription of the local auxin biosynthesis gene YUC4 in a coherent feed forward loop, and this process is necessary to drive vascular regeneration. In the absence of this PLT mediated regeneration response, leaf ground tissue cells can neither acquire early vascular identity marker ATHB8, nor properly polarize auxin transporters to specify new venation paths. The PLT-CUC2 module is required for vascular regeneration, but is dispensable for midvein formation in leaf. We reveal the mechanisms of vascular regeneration in plants and distinguishes the wound repair ability of the tissue from its formation during normal development. © 2020. Published by The Company of Biologists Ltd.Endothelial cell adhesion is implicated in blood vessel sprout formation, yet how adhesion controls angiogenesis, and whether it occurs via rapid remodeling of adherens junctions, focal adhesion assembly, or both, remains poorly understood. Furthermore, how endothelial cell adhesion is controlled in particular tissues and under different conditions remains unexplored. Here, we identified an unexpected role for spatiotemporal c-Src activity in sprouting angiogenesis in the retina, which is in contrast to the dominant focus on c-Src’s role in maintenance of vascular integrity. Thus, mice specifically deficient in endothelial c-Src displayed significantly reduced blood vessel sprouting and loss in actin-rich filopodial protrusions at the vascular front of the developing retina. In contrast to what has been observed during vascular leakage, endothelial cell-cell adhesion was unaffected by loss of c-Src. Instead, decreased angiogenic sprouting was due to loss of focal adhesion assembly and cell-matrix adhesion, resulting in loss of sprout stability. These results demonstrate c-Src signaling at specified endothelial cell membrane compartments (adherens junctions or focal adhesions) control vascular processes in a tissue and context dependent manner. © 2020. Published by The Company of Biologists Ltd.Members of the Iroquois B (IrxB) homeodomain cluster genes, specifically Irx3 and Irx5, are critical for heart, limb, and bone development. Recently, we reported their importance for oocyte and follicle survival within the developing ovary. Irx3 and Irx5 expression begins after sex determination in the ovary but remains absent in the fetal testis. Mutually antagonistic molecular signals ensure ovary vs testis differentiation with canonical Wnt/β-catenin signals paramount for promoting the ovary pathway. Notably, few direct downstream targets have been identified. We report that Wnt/β-catenin signaling directly stimulates Irx3 and Irx5 transcription in the developing ovary. Using in silico analysis of ATAC- and ChIP-Seq databases in conjunction with gonad explant transfection assays, we identified TCF/LEF binding sequences within two distal enhancers of the IrxB locus that promote β-catenin-responsive ovary expression. Meanwhile, Irx3 and Irx5 transcription is suppressed within the developing testis by the presence of H3K27me3 on these same sites. Thus, we resolved sexually dimorphic regulation of Irx3 and Irx5 via epigenetic and β-catenin transcriptional control where their ovarian presence promotes oocyte and follicle survival vital for future ovarian health. © 2020. Published by The Company of Biologists Ltd.OBJECTIVE Suboptimal adherence to insulin treatment is a main issue in adolescents with type 1 diabetes. However, to date, there are no available data on adherence to adjunct noninsulin medications in this population. Our aim was to assess adherence to ACE inhibitors and statins and explore potential determinants in adolescents with type 1 diabetes. RESEARCH DESIGN AND METHODS There were 443 adolescents with type 1 diabetes recruited into the Adolescent Type 1 Diabetes Cardio-renal Intervention Trial (AdDIT) and exposed to treatment with two oral drugs- an ACE inhibitor and a statin-as well as combinations of both, or placebo for 2-4 years. Adherence was assessed every 3 months with the Medication Event Monitoring System (MEMS) and pill count. RESULTS Median adherence during the trial was 80.2% (interquartile range 63.6-91.8), based on MEMS, and 85.7% (72.4-92.9) for pill count. Adherence based on MEMS and pill count dropped from 92.9% and 96.3%, respectively, at the first visit, to 76.3% and 79.0% at the end of the trial. The percentage of study participants with adherence ≥75% declined from 84% to 53%. A good correlation was found between adherence based on MEMS and pill count (r = 0.82, P less then 0.001). Factors associated with adherence were age, glycemic control, and country. CONCLUSIONS We report an overall good adherence to ACE inhibitors and statins during a clinical trial, although there was a clear decline in adherence over time. Older age and suboptimal glycemic control at baseline predicted lower adherence during the trial and, predictably, reduced adherence was more prevalent in subjects who subsequently dropped out. © 2020 by the American Diabetes Association.Intermittent exposure to a sensorimotor perturbation, such as a visuomotor rotation, is known to cause a directional bias on the subsequent movement that opposes the previously experienced perturbation. To date, it is unclear whether the parietal cortex is causally involved in this post-perturbation movement bias. In a recent electroencephalogram study, Savoie et al. (Scientific Reports, volume 8, Article number 12513, 2018) observed increased parietal activity in response to an intermittent visuomotor perturbation, raising the possibility that the parietal cortex could subserve this change in motor behaviour. The goal of the present study was to causally test this hypothesis. Human participants (N = 28) reached toward one of two visual targets located on either side of a fixation point, while being pseudo-randomly submitted to a visuomotor rotation. On half of all rotation trials, single-pulse transcranial magnetic stimulation (TMS) was applied over the right (N = 14) or left (N = 14) parietal cortex 150 ms l activity in the vicinity of the angular gyrus using single-pulse TMS shortly after exposure to a visuomotor perturbation does not impact reach direction on a subsequent movement. Although these results must be interpreted in light of the spatiotemporal characteristics of the TMS protocol used, they suggest that the aforementioned parietal areas may not be critical for the emergence of the motor output adjustments that take place in response to a visuomotor perturbation. Copyright © 2020 Savoie et al.BACKGROUND AND OBJECTIVES Exposure to particulate matter (PM) less then 2.5 μm in aerodynamic diameter (PM2.5) has been linked to detrimental health effects. This study aimed to describe the relationship between long-term PM2.5 exposure and kidney disease, including eGFR, level of albuminuria, and incident CKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS The study included 10,997 participants from the Atherosclerosis Risk in Communities cohort who were followed from 1996-1998 through 2016. Monthly mean PM2.5 concentrations (μg/m3) were estimated at geocoded participant addresses using geographic information system-based, spatiotemporal generalized additive mixed models-including geospatial covariates such as land use-and then averaged over the 12-month period preceding participant examination. Covariate-adjusted, cross-sectional associations of PM2.5, baseline eGFR, and urinary albumin-creatinine ratio (UACR) were estimated using linear regression. PM2.5 and incident CKD (defined as follow-up eGFR less then 60 ml/min per 1.


