-
Holgersen Hastings opublikował 1 rok, 3 miesiące temu
BCR/ABL fusion gene has been discovered as an important and reliable biomarker for early diagnosis of chronic myeloid leukemia (CML). Herein, a novel and switching electrochemiluminescence (ECL) biosensor was developed for ultrasensitive determination of the fusion gene based on the self-enhanced polyethyleneimine-luminol (PEI-Lum) hydrogels coupled with target-initiated DNAzyme motor. The facilely prepared PEI-Lum hydrogels could not only immobilize enormous luminol but shorten the distance of binary system, thus facilitating the mass and electron transfer efficiency of the sensing interface, so that the enhanced ECL signal was achieved. Moreover, the engineering DNA motor was powered by Mg2+-dependent DNAzyme for isothermal DNA signal amplification. As a result, the fabricated ECL biosensor enabled highly sensitive detection of BCR/ABL fusion gene with a broad linear range from 10.0 fM to 10.0 nM and a low detection limit of 3.75 fM (S/N = 3). Significantly, the developed biosensing method provides a potential tool for nucleic acid analysis in clinical diagnosis and a new avenue to design high-efficient ECL nanomaterials.Rapid and accurate clinical assessment of hemostasis is essential for managing patients who undergo invasive procedures, experience hemorrhages, or receive antithrombotic therapies. Hemostasis encompasses an ensemble of interactions between the cellular and non-cellular blood components, but current devices assess only partial aspects of this complex process. In this work, we describe the development of a new approach to simultaneously evaluate coagulation function, platelet count or function, and hematocrit using a carbon nanotube-paper composite (CPC) capacitance sensor. CPC capacitance response to blood clotting at 1.3 MHz provided three sensing parameters with distinctive sensitivities towards multiple clotting elements. Whole blood-based hemostasis assessments were conducted to demonstrate the potential utility of the developed sensor for various hemostatic conditions, including pathological conditions, such as hemophilia and thrombocytopenia. Results showed good agreements when compared to a conventional thromboelastography. Overall, the presented CPC capacitance sensor is a promising new biomedical device for convenient non-contact whole-blood based comprehensive hemostasis evaluation.Zebrafish and their mutant lines have been extensively used in cardiovascular studies. In the current study, the novel system, Zebra II, is presented for prolonged electrocardiogram (ECG) acquisition and analysis for multiple zebrafish within controllable working environments. The Zebra II is composed of a perfusion system, apparatuses, sensors, and an in-house electronic system. First, the Zebra II is validated in comparison with a benchmark system, namely iWORX, through various experiments. The validation displayed comparable results in terms of data quality and ECG changes in response to drug treatment. The effects of anesthetic drugs and temperature variation on zebrafish ECG were subsequently investigated in experiments that need real-time data assessment. The Zebra II’s capability of continuous anesthetic administration enabled prolonged ECG acquisition up to 1 h compared to that of 5 min in existing systems. The novel, cloud-based, automated analysis with data obtained from four fish further provided a useful solution for combinatorial experiments and helped save significant time and effort. The system showed robust ECG acquisition and analytics for various applications including arrhythmia in sodium induced sinus arrest, temperature-induced heart rate variation, and drug-induced arrhythmia in Tg(SCN5A-D1275N) mutant and wildtype fish. The multiple channel acquisition also enabled the implementation of randomized controlled trials on zebrafish models. The developed ECG system holds promise and solves current drawbacks in order to greatly accelerate drug screening applications and other cardiovascular studies using zebrafish.Optical biosensors are rapid, real-time, and portable, have a low detection limit and a high sensitivity, and have a great potential for diagnosing various types of cancer. Optical biosensors can detect cancer in a few million malignant cells, in comparison to conventional diagnosis techniques that use 1 billion cells in tumor tissue with a diameter of 7 nm-10 nm. Current cancer detection methods are also costly, inconvenient, complex, time consuming, and require technical specialists. This review focuses on recent advances in optical biosensors for early detection of cancer. It is primarily concerned with advancements in the design of various biosensors using resonance, scattering, chemiluminescence, luminescence, interference, fluorescence, absorbance or reflectance, and various fiber types. The development of various two-dimensional materials with optical properties such as biocompatibility, field enhancement, and a higher surface-to-volume ratio, as well as advancements in microfabrication technologies, have accelerated the development of optical sensors for early detection of cancer and other diseases. Surface enhanced Raman spectroscopy technology has the potential to detect a single molecule with high specificity, and terahertz waves are a recently explored technology for cancer detection. Due to the low electromagnetic interference, small size, multiplexing, and remote sensing capabilities of optical fiber-based platforms, they may be a driving force behind the rapid development of biosensors. The advantages and disadvantages of existing and future optical biosensor designs for cancer detection are discussed in detail. Additionally, a prospect for future advancements in the development of optical biosensors for point-of-care and clinical applications is highlighted.Taste signals are uniformly encoded and transmitted to the brain’s taste center by taste buds, and the process has not been systematically studied for several decades. The aim of this work was to investigate the distribution of umami receptors on the tongue and its signal coding logic based on the taste bud biosensors. Taste bud biosensors were constructed by immobilizing the taste bud tissues from different tongue regions of the rabbit to the glassy carbon electrode surface; The Shennong information equations were used to analysis the pattern of umami receptors to encode ligands information; The signal amplification capabilities of two types umami receptors (T1R1/T1R3 and mGluRs) were analyzed for the two ligands (L-monosodium glutamate (MSG) and disodium 5′-inosinate (IMP)). The results showed that each taste bud biosensor could sense MSG and IMP with different response currents based on enzyme-substrate kinetics. There was only a small fraction of a great quantity of metabotropic glutamate receptors (mGluRs) could be activated to encode MSG signal. Importantly, T1R1 was more expressed in the rostral tongue cells whose sensitivity to MSG was nearly 100 times stronger than that of caudal tongue cells. The method we proposed made it possible to reveal the distribution and signals coding logic of umami receptors for ligands, which showed great potential to explain the interaction mechanism of umami substances with their receptors more accurately and to develop of artificial intelligent taste sensory.Swine wean-to-finish (W2F) mortality is a multifactorial, dynamic process and a key performance indicator of commercial swine production. Although swine producers typically capture the relevant data, analysis of W2F mortality risk factors is often hindered by the fact that, even if data is available, they are typically in different formats, non-uniform, and dispersed among multiple unconnected databases. In this study, an automated framework was created to link multiple data streams to specific cohorts of market animals, including sow farm productivity parameters, sow farm and growing pig health factors, facilities, management factors, and closeout data from a Midwestern USA production system. The final dataset (master-table) contained breeding-to-market data for 1,316 cohorts of pigs marketed between July 2018 and June 2019. Following integration into a master-table, continuous explanatory variables were categorized into quartiles averages, and the W2F mortality was log-transformed, reporting geometric mean epidemic versus negative groups for porcine reproductive and respiratory syndrome virus (15.4 % vs 8.7 %), and Mycoplasma hyopneumoniae epidemic versus negative groups (13.7 % vs 9.9 %). Overall, this study demonstrated the application of a whole-herd analysis by aggregating information of the pre-weaning phase with the post-weaning phase (breeding-to-market) to identify and measure the major risk factors of W2F mortality.Lymphocytic choriomeningitis virus (LCMV) is a ubiquitous virus carried by rodents. It causes human disease through contact with infectious mouse faeces, urine or secretions. The virus initially infects the human respiratory tract and lungs and produces typical viral symptoms and signs. The infection is usually self-limiting and recovery is the norm. A small proportion of individuals may develop aseptic meningitis. It is hypothesised that in infancy the virus may cause respiratory tract infection through contact with mouse excreta. The infection could activate production of staphylococcal enterotoxin in babies who are colonised by Staphylococcus aureus. Indeed, a mouse animal model has shown that the combination of LCMV infection and introduction of enterotoxin B produces fatal haematogenous shock. Neither agent alone is lethal. Pathological (and physiological) evidence indicates shock could be the underlying terminal event in SIDS (the observed tissue damage seen in the heart and diaphragmatic muscles, and af SIDS.In Countries with Common Law, the principles of medical liability in case of malpractice claim are based on the Bolam/Bolitho tests, that is, the opinion of a panel of average professionals of the same specialty. On the contrary, in Countries whose legal system is based on the Corpus Iustinianeum the practice of a doctor is benchmarked against established guidelines. Occasionally, the opinion of an expert panel may not overlap the formal guidelines, in particular in cases like the surgical treatment of acute diverticulitis and that of acute cholecystitis where pre-existing old-fashioned ideas are so rooted into the behaviour of doctors that they are extremely difficult to eradicate despite the growing amount of evidence. This may lead to the paradox that a doctor who followed the guidelines might be considered imprudent or negligent as his or her choice did not overlap that of the „average” professional. This is a grey area that needs clarification. We propose that the „expert panel” nominated during a medical malpractice claim should not report their personal – although shared – opinion, but should unbiasedly report all the available acceptable options. Criminal and civil courts, along with other medical panels, must consider this bias when scrutinizing the practice of a professional.We assessed how the interaction between mono-(2-ethylhexyl) phthalate (MEHP) in maternal sera and the maternal genotypes associated with nuclear receptors affect fatty acid levels in a prospective birth cohort study of pregnant Japanese individuals (n = 437) recruited in Sapporo between 2002 and 2005. We analyzed MEHP and fatty acids using gas chromatography-mass spectrometry. Thirteen single nucleotide polymorphisms of peroxisome proliferator-activated receptor (PPAR) alpha, PPAR gamma (PPARG), PPARG coactivator 1A (PPARGC1A), PPAR delta, constitutive androstane receptor, liver X receptor (LXR) alpha, and LXR beta (LXRB) were analyzed using real-time PCR. Multiple linear regression models were used to confirm the influence of log10-transformed MEHP levels and maternal genotypes on log10-transformed fatty acid levels. When the effects of the interaction between MEHP levels and the maternal PPARGC1A (rs8192678) genotype on oleic acid levels were evaluated, the estimated changes (95 % confidence intervals) in oleic acid levels against MEHP levels, maternal PPARGC1A (rs8192678)-GA/AA genotype, and the interaction between them showed a mean reduction of 0.


