-
Mays Carter opublikował 5 miesięcy, 1 tydzień temu
Betel-nut, a popular masticatory among Southeast Asian populations is a class I carcinogen, previously associated with dyslipidemia and aberrant lipid metabolism, and is reported to be used more frequently by females, than males. This study investigates the potential of repurposing the anti-diabetic drug, vildagliptin, a dipeptidyl peptidase-4 inhibitor, for alleviating the oncogenic condition in female Swiss Albino mice administered an aqueous extract of betel-nut (AEBN) orally (2mgml
) for 24weeks.
Tissues were investigated by histopathological, immunohistochemical and apoptosis assays. Biochemical analyses of oxidative stress markers and lipid profile were performed using different tissues and sera. The expressions of different proteins involved in lipid metabolism and oncogenic pathways were evaluated by Western blotting.
AEBN induced carcinogenesis primarily in the liver by significantly impairing AMPK signaling, inducing oxidative stress, activating Akt/mTOR signaling, increasing Ki-67 immunoreactivity and cyclin D1 expression, and significantly diminishing apoptosis. Co-administration of AEBN with vildagliptin (10mgkg
body weight) for 8weeks reduced liver dysplasia, and significantly decreased free palmitic acid, increased free oleic acid, normalized lipid profile, decreased oxidative stress, cyclin D1 expression, Ki-67 immunoreactivity, and Bcl2 expression, and increased the ratio of apoptotic/non-apoptotic cells. Mechanistically, vildagliptin elicited these physiological and molecular alterations by restoring normal AMPK signaling and reducing the cellular expressions of FASN and HMGCR, restoring AMPK-dependent phosphorylation of p53 at Ser-15 and reducing Akt/mTOR signaling.
These results indicate that vildagliptin may alleviate betel-nut induced carcinogenesis in the liver of female mice.
These results indicate that vildagliptin may alleviate betel-nut induced carcinogenesis in the liver of female mice.
Cisplatin (CP) is an antineoplastic widely used in the treatment of various solid tumors, however, its clinical application is limited by nephrotoxicity. Here, we compared the impact of preconditioning with high-intensity interval training (HIIT) with continuous training of low (LIT) and moderate (MIT) intensity on innate immunity markers in female rats with CP-induced acute kidney injury.
The rats were divided into five groups (n=7) saline control and sedentary (C+S); CP and sedentary (CP+S); CP and LIT (CP+LIT); CP and MIT (CP+MIT) and CP and HIIT (CP+HIIT). The training intensity was determined by a maximum running test. At the end of training, the rats received a single dose of CP (5mg/kg), and 7days later they were euthanized. We evaluated renal function parameters (serum creatinine, glomerular filtration rate and proteinuria), renal structure, macrophage tissue infiltration, immunolocalization of nuclear transcription factor kappa B (NF-κB), renal levels of tumor necrosis factor-alpha (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6), and gene expression of monocyte chemoattractant protein-1 (MCP-1), toll-like receptor 4 (TLR4), and NF-κB in renal tissue.
Although both MIT and HIIT attenuated the degree of renal injury, only the HIIT prevented changes in renal function. The three training protocols mitigated the increase in expression of all inflammatory markers, however, this effect was more pronounced in HIIT.
All training protocols promoted renoprotective actions, but HIIT was more effective in mitigating CP-induced acute kidney injury, in part by modulation of important markers of the innate immune response.
All training protocols promoted renoprotective actions, but HIIT was more effective in mitigating CP-induced acute kidney injury, in part by modulation of important markers of the innate immune response.
Growing evidence indicates insufficient autophagy is crucial to airway remodeling in asthma. However, it is uncertain whether p62, an autophagy major regulator, mediates the airway remodeling process. This study aimed to evaluate the role and underlying mechanism of p62 in airway remodeling in asthma.
Airway remodeling was confirmed via histopathology. Western blotting and RT-PCR were used to detect the expression of autophagic and glycolytic proteins, as well as glycolytic genes. Glycolysis was measured by glucose consumption and lactate production. Cell proliferation was analyzed by CCK8 assays while and the scratch test and transwell method were used for cell migration.
We found that insufficient autophagic flux and increased p62 expression existed in chronic asthma mice. Additionally, knockdown of p62 inhibited asthmatic human bronchial smooth muscle cells (BSMCs) proliferation and migration in vitro. To elucidate the underlying mechanism of p62-mediated autophagy flux in directing BSMCs function, we demonstrated that knockdown of p62 decreased the glucose consumption and lactate production in BSMCs, whereas p62 overexpression had the opposite effect. Furthermore, we showed that p62 regulated glycolysis in BSMCs by the mTOR/c-Myc/hexokinase 2 (HK2) pathway.
Our findings suggest that p62 is involved in BSMCs proliferation and migration via the mTOR/c-Myc/HK2-mediated glycolysis, thereby providing a new target for airway remodeling treatment.
Our findings suggest that p62 is involved in BSMCs proliferation and migration via the mTOR/c-Myc/HK2-mediated glycolysis, thereby providing a new target for airway remodeling treatment.
To explore the mechanisms of diabetes mellitus (DM)-induced testicular injury caused by modulation of testicular glycolysis and gut microbiota (GM), and evaluation of the efficacy of catalpol in reversing testicular morbidity.
A model of DM-induced testicular injury was established using a high-fat diet in KK-Ay mice. Microbial communities in the feces of mice in normal, model and catalpol (Cat) groups were analyzed by 16S gene sequencing. Correlations between the GM and lactate metabolism levels, lactate dehydrogenase activity, and indicators of testicular injury were analyzed.
Cat significantly reduced general indicators of diabetes in mice with DM-induced reproductive injury, mitigated damage to the testicular tissue, and increased sperm count and motility. Additionally, the levels of products of glycolysis metabolism (e.g. lactate) increased following Cat treatment compared with the Model group. Disorders in the GM were also reversed in the Cat group.
Cat ameliorated DM-induced testicular injury in KK-Ay mice by increasing the energy available to germ cells through glycolysis, principally through modulation of the GM and a reduction in the quantities of associated pathogenic bacteria.
Cat ameliorated DM-induced testicular injury in KK-Ay mice by increasing the energy available to germ cells through glycolysis, principally through modulation of the GM and a reduction in the quantities of associated pathogenic bacteria.
Lung cancer is a key contributor to the cancer-related death throughout the world. FGF21 (fibroblast growth factor 21) has been found to regulate various pulmonary diseases, whereas, the role and mechanism of FGF21 in lung cancer remain unclear. The aim of this research was to explore the expression and function of FGF21 in lung cancer.
The mRNA and protein expression of FGF21 were analyzed through qRT-PCR and western blot, respectively. Cell proliferation, apoptosis and migration were analyzed by CCK-8 assay, flow cytometry and wound-healing assay, respectively. ROS, SOD, LDH and CK were examined with respective commercially kit.
FGF21 level was increased in lung cancer tissue samples and cell lines at both mRNA and protein levels. Overexpressing FGF21 promoted cell growth and migration significantly. It also increased SOD and reduced ROS, LDH and CK contents. By contrast, down-regulated FGF21 presented the opposite effect on lung cancer cells. Furthermore, FGF21 may function as a tumor promotor by activating the SIRT1/PI3K/AKT signaling pathway in lung cancer.
This study demonstrated that FGF21 was a tumor promoter in lung cancer development, serving as a feasible therapeutic target in the treatment of lung cancer.
This study demonstrated that FGF21 was a tumor promoter in lung cancer development, serving as a feasible therapeutic target in the treatment of lung cancer.Prenatal exposure to arsenic is demonstrated to elevate the risk of brain damage and neurological disorders in the fetus, mainly due to its ability for crossing through the placental barriers. Increase in oxidative stress, inflammation, and DNA damage is main mechanisms of arsenic-induced neurotoxicity. Therefore, this study aimed to evaluate the neuroprotective effects of melatonin, as a potent anti-oxidant and anti-inflammatory agent against arsenic toxicity in the brains of male offspring rats. Pregnant mother rats were randomly assigned into four groups including group I, as control, group II received 10 mg/kg melatonin, group III received arsenic at 50 mg/kg, and group IV received melatonin and arsenic. After a two-month period, oxidative stress, DNA damage, inflammation and apoptosis were assessed in the male offspring rats. Exposure to arsenic significantly increased the pro-inflammatory and oxidative factors resulting in DNA damage and apoptosis in the brain tissues of offspring rats in comparison to controls (p less then 0.05). Exogenous administration of melatonin showed a significant increase in the tissue levels of acetylcholine esterase, decrease in the lactate dehydrogenase and myeloperoxidase, when compared to arsenic group (p less then 0.05). Melatonin also overcame the arsenic-induced oxidative stress and suppressed inflammation, DNA damage and apoptosis. Our results suggested that melatonin may be a promising neuro-protective agent and momentous therapy for the treatment of arsenic-toxicity in clinical conditions.Liver steatosis is one of the main drivers for the development of whole-body insulin resistance. Conversely, aerobic training (AT) has been suggested as non-pharmacological tool to improve liver steatosis, however, the underlying molecular mechanism remains unclear. Therefore, the aim of this study was to analyze the effect of 8-weeks AT in non-alcoholic liver disease (NAFLD) outcomes in obese mice. Male C57BL/6 J wild type (WT) were fed with standard (SD) or high-fat diet (HFD) for 12-weeks. Another group fed with HFD underwent 8-weeks of AT (60% of maximum velocity), initiated at the 5th week of experimental protocol. We measured metabolic, body composition parameters, protein and gene expression inflammatory and metabolic mediators. We found that AT attenuates the weight gain, but not body fat accumulation. AT improved triacylglycerol and non-esterified fatty acid plasma concentrations, and also whole-body insulin resistance. Regarding NAFLD, AT decreased the progression of macrovesicular steatosis and inflammation through the upregulation of AMPK Thr172 phosphorylation and PPAR-α protein expression. Moreover, although no effects of intervention in PPAR-γ protein concentration were observed, we found increased levels of its target genes Cd36 and Scd1 in exercised group, demonstrating augmented transcriptional activity. AT reduced liver cytokines concentrations, such as TNF-α, IL-10, MCP-1 and IL-6, regardless of increased Ser536 NF-κB phosphorylation. In fact, none of the interventions regulated NF-κB target genes Il1b and Cccl2, demonstrating its low transcriptional activity. Therefore, we conclude that AT attenuates the progression of liver macrovesicular steatosis and inflammation through AMPK-PPAR-α signaling and PPAR-γ activation, respectively, improving insulin resistance in obese mice.