• Rose Mccarthy opublikował 5 miesięcy, 1 tydzień temu

    High-grade CIN and cervical cancer induce comparable changes in lipid levels, which are closely related to the development of cervical tumors. These results suggest that lipid profiling is a useful method for monitoring progression to cervical cancer.In this work, we study the effect of the deformation field on the physical aging behavior of an aqueous Carbopol dispersion. It is composed of soft swollen particles of gel that get deformed and acquire a polygonal shape, with flat interfaces rendering the dispersion a soft solid-like consistency as filled volume fraction approaches unity. It has been proposed that owing to release of stored elastic energy in the deformed particles, Carbopol dispersion undergoes microstructural evolution that is reminiscent of physical aging in soft glassy materials. We observe that application of moderate magnitude of oscillatory strain to Carbopol dispersion slows down its relaxation dynamics, thereby showing characteristics of overaging. On the other hand, the sufficiently high magnitude of strain makes the relaxation dynamics faster, causing rejuvenation. We also solve the soft glassy rheology model, which, when subjected to the same flow field, corroborates with experimental observations on the Carbopol dispersion. This behavior, therefore, suggests that in a system of jammed soft particles of Carbopol, the particles occupying shallow energy wells upon application of moderate strain field adjust themselves in such a manner that they predominantly occupy the deeper energy wells leading to observe the overaging dynamics.Biomass chars are known to be intrinsically redox-reactive toward some organic compounds, but the mechanisms are still unclear. To address this, a char made anoxically at 500 °C from dealkaline lignin was reacted either in the fresh state or after 180-day aging in air with p-nitrophenol (NO2-P), p-hydroxybenzaldehyde (CHO-P), phenol (H-P), or p-methoxyphenol (MeO-P). The reactions were carried out under oxic or anoxic conditions. Degradation occurred in all cases. Both oxidation and reduction products were identified, with yields dependent on the presence or absence of air during reaction or storage. They included oligomers, amines, and ring-hydroxylated compounds, among others. Exposure to air suppressed sorption, annihilated reducing sites, and provided a source of reactive oxygen species that assisted degradation. Sorption suppression was due to the incorporation of hydrophilic groups by chemisorption of oxygen, and possibly blockage of sites by products. Fresh char has comparable electron-donating and accepting capacity, whereas there is a preponderance of electron-accepting over donating capacity in aged char. Under anoxic conditions, both oxidation and reduction occurred. Under oxic conditions or after aging in air, oxidation predominated, and linear free energy relationships were found between the rate constant and the Hammett or Brown substituent electronic parameter or the standard electrode potential of the phenol. The results demonstrate that chars possess heterogeneous redox activities depending on reaction pairs, reaction conditions, and aging.Ice accumulation on aircraft is known to negatively impact the aerodynamic and mechanical operation, sometimes resulting in catastrophic failure. Recently, microwave resonators have gained interest as durable and reliable frost and ice detectors. Here, a microwave resonator sensor with built-in heating capability patterned into the ground plane was designed, fabricated, and tested to investigate real-time ice and frost growth. Sensing was performed on surfaces with anti-icing coatings to quantitatively analyze the effectiveness of these materials. The sensor was also tested to determine its ability to evaluate different deicing methods. The sensor itself was a split-ring resonator (SRR) operating at 5.82 GHz, which could effectively distinguish between water and ice by detecting changes in the dielectric properties on or around its surface. This application was particularly suited for an SRR due to the extreme difference between the relative permittivity of water (ε = 90) and ice (ε = 3.2) at 5 GHz and 0 °C. The results from this sensor can be used to determine the holdover time of various coatings to resist ice formation. This study validates the use of SRRs as ice detection sensors for applications where ice and frost are of great interest, such as on aircraft, roads, or walkways.We report a technique to amplify the electrochemical signal within micro- and nanodroplets via radical annihilation amplification. Toluene droplets filled with decamethylferrocene (DmFc) are suspended in an aqueous solution containing 10 mM NaClO4 and 10 μM Na2C2O4. When a toluene droplet irreversibly collides with an ultramicroelectrode biased sufficiently positive for concurrent oxidation of DmFc and oxalate (C2O42-), blip-type responses are observed in the amperometric i-t trace even when the concentration of DmFc is 50 nM. The toluene droplet wetting the ultramicroelectrode effectively creates a microgap, where DmFc molecules are oxidized to DmFc+. In the continuous phase, the oxidation of oxalate (C2O42-) produces a strong reducing agent, CO2•-. Regeneration of DmFc via radical annihilation amplifies the current, similar to conventional nanogap experiments. This experiment allows one to observe the electrochemistry of hundreds to thousands of molecules trapped in a femtoliter droplet, enhancing the sensitivity of droplet-based electrochemistry by 5 orders of magnitude. Finite element simulations validate our experimental results and indicate the importance of the droplet geometry to amplification.Thermal decomposition of 1,3,5-triazines with azido, trinitroethyl, and nitramino groups, the three important energetic functionalities, has been studied with a range of thermal analysis tools. The involved compounds melt under heating with the following mass loss and heat and gas release in the course of thermal decomposition. Model-fitting kinetic analysis resulted in formal reaction schemes with two general stages. In case of the least energetic 6-azido-2,4-bis(2,2,2-trinitroethylamino)-1,3,5-triazine, the first reaction is a first-order reaction followed by a third-order reaction. Alternatively, for 6-azido-2,4-bis(2,2,2-trinitroethylnitramino)-1,3,5-triazine and 2,4,6-tris(2,2,2-trinitroethylnitramino)-1,3,5-triazine, the first step comprises the autocatalytic reaction. The activation energy for the first decomposition step drops from 141 to 122 kJ mol-1 due to the inductive influence of a β-nitramino group. The second general reaction for all species obeys the third-order reaction model with activation energies in the range 112-126 kJ mol-1. On the basis of the analysis of the kinetic data and temporal behavior of the evolved gases, a similar primary decomposition channel, the homolytic cleavage of a C-NO2 bond, has been proposed for all investigated substances.CdSe single crystals (SCs), with a relatively high atomic number, large X-ray absorption coefficients, and high carrier mobility, are expected to provide high-performance detection for X-ray. However, the difficulty of growing high-quality CdSe SC has severely limited its application in X-ray detection. In this work, we develop an unconstrained physical gas phase method and in situ annealing process to grow high-quality CdSe SCs under unconstrained conditions. Using this method, CdSe SCs exhibit natural exposure planes, ultrahigh resistivity of 5.43 × 1012 to 1.29 × 1013 Ω cm and high μτ product of 1.3 × 10-2 to 1.5 × 10-2 cm2 V-1. It is also observed that CdSe SC X-ray detectors exhibit a record sensitivity of 2.08 × 105 μC Gyair-1 cm-2 and a low detection limit of 85 nGyair s-1, which are both desired in medical diagnostics. Moreover, those devices with different crystal directions provide anisotropic X-ray detection performance. Our findings pave a new avenue to exploit high-performance CdSe SC X-ray detectors.Light-duty vehicles emit ∼20% of net US greenhouse gases. Deployment of electric vehicles (EVs) can reduce these emissions. The magnitude of the reduction depends significantly on EV charging patterns and hourly power grid variations. Previous US EV studies either do not use hourly grid data, or use data from 2012 or earlier. Since 2012, US grids have undergone major emission-relevant changes, including growth of solar from ∼1 to ∼20% of generation in California, and >30% reduction of coal power countrywide. This study uses hourly grid data from 2018 and 2019 (alongside hourly charging, driving, and temperature data) to estimate EV use emissions in 60 cases spanning the US. The emission impact of charging pattern varies by region. In California and New York, respectively, overnight EV charging produces ∼70% more and ∼20% fewer emissions than daytime charging. We quantify error from two common approximations in EV emission analysis, ignoring hourly variation in grid power and ignoring temperature-driven variation in fuel economy. The combined error exceeds 10% in 30% of cases, and reaches 50% in California, home to half of US EVs. A novel EV emission approximation is introduced, validated ( less then 1% error), and used to estimate EV emissions in future scenarios.We report a prodrug, Glu-DAPPD, to overcome the shortcomings of an anti-neuroinflammatory molecule, N,N’-diacetyl-p-phenylenediamine (DAPPD), in biological applicability for potential therapeutic applications. We suspect that Glu-DAPPD can release DAPPD through endogenous enzymatic bioconversion. Consequently, Glu-DAPPD exhibits in vivo efficacies in alleviating neuroinflammation, reducing amyloid-β aggregate accumulation, and improving cognitive function in Alzheimer’s disease transgenic mice. Our studies demonstrate that the prodrug approach is suitable and effective toward developing drug candidates against neurodegeneration.The last two decades have seen great advancements in fundamental understanding and applications of metallic nanoparticles stabilized by mixed-ligand monolayers. Identifying and controlling the organization of multiple ligands in the nanoparticle monolayer has been studied, and its effect on particle properties has been examined. Mixed-ligand protected particles have shown advantages over monoligand protected particles in fields such as catalysis, self-assembly, imaging, and drug delivery. In this Review, the use of mixed-ligand monolayer protected nanoparticles for sensing applications will be examined. This is the first time this subject is examined as a whole. Mixed-ligand nanoparticle-based sensors are revealed to be divided into four groups, each of which will be discussed. The first group consists of ligands that work cooperatively to improve the sensors’ properties. In the second group, multiple ligands are utilized for sensing multiple analytes. The third group combines ligands used for analyte recognition and signal production. In the final group, a sensitive, but unstable, functional ligand is combined with a stabilizing ligand. The Review will conclude by discussing future challenges and potential research directions for this promising subject.Two-dimensional hybrid organic-inorganic perovskites (2D-HOIPs) that form natural multiple quantum wells have attracted increased research interest due to their interesting physics and potential applications in optoelectronic devices. Recent studies have shown that spintronics applications can also be introduced to 2D-HOIPs upon integrating chiral organic ligands into the organic layers. Here we report spin-dependent photovoltaic and photogalvanic responses of optoelectronic devices based on chiral 2D-HOIPs, namely, (R-MBA)2PbI4 and (S-MBA)2PbI4. The out-of-plane photocurrent response in vertical photovoltaic devices exhibits ∼10% difference upon right and left circularly polarized light (CPL) excitation, which originates from selective spin transport through the chiral multilayers. In contrast, the in-plane photocurrent response generated by CPL excitation of planar photoconductive devices shows a typical response of chirality-induced circular photogalvanic effect that originates from the Rashba splitting in the electronic bands of these compounds.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0