-
Li Guldager opublikował 5 miesięcy, 1 tydzień temu
This study aimed to compare the effect of traditional and stability-oriented strength exercises on trunk stability and deep stabilization system (DSS) activation in elite futsal players.
Twenty elite futsal players (21-34 years, 180 ± 13 cm, 79 ± 15 kg) were randomly divided into a group that performed stability-oriented exercises and a group that performed traditional strength exercises. Both interventions lasted for 10 weeks and included 25 strength training sessions.
The DSS pretest and posttest included the diaphragm test, trunk flexion test, back extension test, hip flexion test, intraabdominal pressure test, and a side plank test on a 1-5 point scale.
Both groups had similar initial test results, where the stability-oriented exercise group had significantly improved intraabdominal pressure test (
= 0.004, by lower quartile rate), trunk flexion (
= 0.036, by 0.5 grade in median), and side plank (
= 0.002, by 1 grade in median) in posttest results. Traditional exercise did not change the results of any of the included DSS function tests.
Stabilization-oriented exercises effectively activate the functions of the DSS and should be prioritized over traditional strength exercises in injury prevention training programs. The use of stabilization-oriented exercises might prevent injury and overloading in elite futsal players.
Stabilization-oriented exercises effectively activate the functions of the DSS and should be prioritized over traditional strength exercises in injury prevention training programs. The use of stabilization-oriented exercises might prevent injury and overloading in elite futsal players.Spin state preferences for a cationic Mn3+ chelate complex in four different crystal lattices are investigated by crystallography and SQUID magnetometry. The [MnL1]+ complex cation was prepared by complexation of Mn3+ to the Schiff base chelate formed from condensation of 4-methoxysalicylaldehyde and 1,2-bis(3-aminopropylamino)ethane. The cation was crystallized separately with three polyatomic counterions and in one case was found to cocrystallize with a percentage of unreacted 4-methoxysalicylaldehyde starting material. The spin state preferences of the four resultant complexes [MnL1]CF3SO3·xH2O, (1), [MnL1]PF6·xH2O, (2), [MnL1]PF6·xsal·xH2O, (2b), and [MnL1]BPh4, (3), were dependent on their ability to form strong intermolecular interactions. Complexes (1) and (2), which formed hydrogen bonds between [MnL1]+, lattice water and in one case also with counterion, showed an incomplete thermal spin crossover over the temperature range 5-300 K. In contrast, complex (3) with the BPh4-, counterion and no lattice water, was locked into the high spin state over the same temperature range, as was complex (2b), where inclusion of the 4-methoxysalicylaldehyde guest blocked the H-bonding interaction.By having an extensive territory and suitable climate conditions, South America is one of the most important agricultural regions in the world, providing different kinds of vegetable products to different regions of the world. However, such favorable conditions for plant production also allow the development of several pests, increasing production costs. Among them, whiteflies (Hemiptera Aleyrodidae) stand out for their potential for infesting several crops and for being resistant to insecticides, having high rates of reproduction and dispersal, besides their efficient activity as virus vectors. Currently, the most important species occurring in South America are Bemisia afer, Trialeurodes vaporariorum, and the cryptic species Middle East-Asia Minor 1, Mediterranean, and New World, from Bemisia tabaci complex. In this review, a series of studies performed in South America were compiled in an attempt to unify the advances that have been developed in whitefly management in this continent. At first, a background of the current whitefly distribution in South American countries as well as factors affecting them are shown, followed by a background of the whitefly transmitted viruses in South America, addressing their location and association with whiteflies in each country. Afterwards, a series of management strategies are proposed to be implemented in South American fields, including cultural practices and biological and chemical control, finalizing with a section containing future perspectives and directions for further research.Aging is an evolutionally conserved process that limits life activity. Cellular aging is the result of accumulated genetic damage, epigenetic damage and molecular exhaustion, as well as altered inter-cellular communication; these lead to impaired organ function and increased vulnerability to death. Skeletal muscle constitutes ~40% of the human body’s mass. In addition to maintaining skeletal structure and allowing locomotion, which enables essential daily activities to be completed, skeletal muscle also plays major roles in thermogenesis, metabolism and the functioning of the endocrine system. Unlike many other organs that have a defined size once adulthood is reached, skeletal muscle is able to alter its structural and functional properties in response to changes in environmental conditions. Muscle mass usually remains stable during early life; however, it begins to decline at a rate of ~1% year in men and ~0.5% in women after the age of 50 years. On the other hand, different exercise training regimens are able to restore muscle homeostasis at the molecular, cellular and organismal levels, thereby improving systemic health. Here we give an overview of the molecular factors that contribute to lifespan and healthspan, and discuss the effects of the longevity gene Cisd2 and middle-to-old age exercise on muscle metabolism and changes in the muscle transcriptome in mice during very old age.Swine are regarded as promising biomedical models, but the dynamics of their gastrointestinal microbiome have been much less investigated than that of humans or mice. The aim of this study was to establish an integrated multi-omics protocol to investigate the fecal microbiome of healthy swine. To this end, a preparation and analysis protocol including integrated sample preparation for meta-omics analyses of deep-frozen feces was developed. Subsequent data integration linked microbiome composition with function, and metabolic activity with protein inventories, i.e., 16S rRNA data and expressed proteins, and identified proteins with corresponding metabolites. 16S rRNA gene amplicon and metaproteomics analyses revealed a fecal microbiome dominated by Prevotellaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae and Clostridiaceae. Similar microbiome compositions in feces and colon, but not ileum samples, were observed, showing that feces can serve as minimal-invasive proxy for porcine colon microbiomes. Longitudinal dynamics in composition, e.g., temporal decreased abundance of Lactobacillaceae and Streptococcaceae during the experiment, were not reflected in microbiome function. Instead, metaproteomics and metabolomics showed a rather stable functional state, as evident from short-chain fatty acids (SCFA) profiles and associated metaproteome functions, pointing towards functional redundancy among microbiome constituents. In conclusion, our pipeline generates congruent data from different omics approaches on the taxonomy and functionality of the intestinal microbiome of swine.Considering the increase in research regarding environmental pollution reduction, the utilization of cementitious material, a commonly used construction material, in photocatalysts has become a desirable research field for the widespread application of photocatalytic degradation technology. Nano-reinforcement technology for cementitious materials has been extensively researched and developed. In this work, as a new and promising reinforcing agent for cementitious materials, the photocatalytic performance of titanium dioxide nanotube (TNT) was investigated. The degradation of methylene blue was used to evaluate the photocatalytic performance of the TNT-reinforced cement paste. In addition, cement paste containing micro-TiO2 (m-TiO2) and nano-TiO2 (n-TiO2) particles were used for comparison. Moreover, the effect of these TiO2-based photocatalytic materials on the cement hydration products was monitored via X-ray diffraction (XRD) and thermogravimetric analysis (TG). The results indicated that all the TiO2 based materials promoted the formation of hydration products. After 28 days of curing, the TNT-reinforced cement paste contained the maximum amount of hydration products (Ca(OH)2). Furthermore, the cement paste containing TNT exhibited better photocatalytic effects than that containing n-TiO2, but worse than that containing m-TiO2.The LINC (LInker of Nucleoskeleton and Cytoskeleton) complex is localized within the nuclear envelope and consists of SUN (Sad1/UNc84 homology domain-containing) proteins located in the inner nuclear membrane and KASH (Klarsicht/Anc1/Syne1 homology domain-containing) proteins located in the outer nuclear membrane, hence linking nuclear with cytoplasmic structures. While the nucleoplasm-facing side acts as a key player for correct pairing of homolog chromosomes and rapid chromosome movements during meiosis, the cytoplasm-facing side plays a pivotal role for sperm head development and proper acrosome formation during spermiogenesis. A further complex present in spermatozoa is involved in head-to-tail coupling. An intact LINC complex is crucial for the production of fertile sperm, as mutations in genes encoding for complex proteins are known to be associated with male subfertility in both mice and men. The present review provides a comprehensive overview on our current knowledge of LINC complex subtypes present in germ cells and its central role for male reproduction. Future studies on distinct LINC complex components are an absolute requirement to improve the diagnosis of idiopathic male factor infertility and the outcome of assisted reproduction.This paper presents a novel tool for Spanish commercial wine discrimination according to their designation of origin (PDO). A total of 65 commercial wines from different Spanish designation of origin (Alicante, Bullas, Campo de Borja, Jumilla, Castilla la Mancha, Ribeiro, Ribera de Duero, Rioja, Rueda, Utiel-Requena, Valdepeñas and Valencia) were characterized. The rare earth elements (REEs) content was determined by a high-temperature torch integrated sample introduction system (hTISIS) coupled to inductively coupled plasma mass spectrometry (ICP-MS). The REE content was used to draw characteristic PDOs radar charts. Results indicated that the REEs fingerprint provides a good prospect to discriminate the different Spanish PDOs, except for Alicante, Castilla la Mancha, Jumilla, Utiel-Requena and Valdepeñas. Finally, for those PDOs that were not properly distinguished, a second fingerprint obtained from Ba, Co, Cr, Mn, Ni, Pb and V content was used for discrimination purposes.At northern latitudes, non-ethnic population groups can be at an increased risk of vitamin D deficiency (defined as a 25-hydroxyvitamin D [25(OH)D] status ≤30 nmol/L). The vitamin D status of ethnic minority groups has been examined both in UK and European populations, but not in the Irish context. The aim of this study is to assess the vitamin D status from a selection of the Dublin population of South East Asian descent. A search was conducted, using the laboratory information system of St James’s Hospital, Dublin, for vitamin D requests by General practitioners. From 2013 to 2016, 186 participants were identified and 25(OH)D analysis was quantified using liquid chromatography-tandem mass spectrometry (LC-MS-MS). Overall, the median age was 32 years, 51% were male, and the 25(OH)D concentration ranged from 10 to 154 nmol/L. In total, 66.7% of the total sample were vitamin D deficient and 6.7% had a 25(OH)D status greater than 50 nmol/L (the 25(OH)D concentration defined by the EU as 'sufficient’). Females had a significantly higher 25(OH)D concentration than males (25.