-
Nyborg Skinner opublikował 5 miesięcy temu
This demonstrates that CP excitation in 1L-MoS2 can be described as a Raman-like scattering process. These results explain the CP generation process in 1L-TMDs, paving the way for coherent all-optical control of excitons in layered materials in the THz frequency range.The development of a flexible electronic skin (e-skin) highly sensitive to multimodal vibrations and a specialized sensing ability is of great interest for a plethora of applications, such as tactile sensors for robots, seismology, healthcare, and wearable electronics. Here, we present an e-skin design characterized by a bioinspired, microhexagonal structure coated with single-walled carbon nanotubes (SWCNTs) using an ultrasonic spray method. We have demonstrated the outstanding performances of the device in terms of the capability to detect both static and dynamic mechanical stimuli including pressure, shear displacement, and bending using the principles of piezoresistivity. Because of the hexagonal microcolumnar array, whose contact area changes according to the mechanical stimuli applied, the interlock-optimized geometry shows an enhanced sensitivity. This produces an improved ability to discriminate the different mechanical stimuli that might be applied. Moreover, we show that our e-skins can detect, discriminate, and monitor various intensities of different external and internal vibrations, which is a useful asset for various applications, such as seismology, smart phones, wearable human skins (voice monitoring), etc.The health impact of environmental pollution involving an increase in human diseases has been subject to extensive study in recent decades. The methodology in biomimetic investigation of these pathophysiologic events is still in progress to uncover the gaps in knowledge associated with pollution and its influences on health. Herein, we describe a comprehensive evaluation of environmental pollutant-caused lung inflammation and injury using a microfluidic pulmonary alveolus platform with alveolar-capillary interfaces. We performed a microfluidic three-dimensional coculture with physiological microenvironment simulation at microscale control and demonstrated a reliable reconstruction of tissue layers including alveolar epithelium and microvascular endothelium with typical mechanical, structural, and junctional integrity, as well as viability. On-chip detection and analysis of pulmonary alveolus responses focusing on various inflammatory and injurious dynamics to the respective pollutant stimulations were achieved in the coculture-based microfluidic pulmonary alveolus model, in comparison with common on-chip monoculture and off-chip culture tools. We confirmed the synergistic effects of the epithelial and endothelial interfaces on the stimuli resistance and verified the importance of creating complex tissue microenvironments in vitro to explore pollution-involved human pathology. We believe the microfluidic approach presents great promise in environmental monitoring, drug discovery, and tissue engineering.Inspired by the self-assembly phenomena in nature, the instructed self-assembly of exogenous small molecules in a biological environment has become a prevalent process to control cell fate. Despite mounting examples of versatile bioactivities, the underlying mechanism remains less understood, which is in large hindered by the difficulties in the identification of those dynamic assemblies in situ. Here, with direct stochastic optical reconstruction microscopy, we are able to elucidate the dynamic morphology transformation of the enzyme-instructed supramolecular assemblies in situ inside cancer cells with a resolution below 50 nm. It indicates that the assembling molecules endure drastically different pathways between cell lines with different phosphatase activities and distribution. In HeLa cells, the direct formation of intracellular supramolecular nanofibers showed slight cytotoxicity, which was due to the possible cellular secretory pathway to excrete those exogenous molecules assemblies. In contrast, in Saos-2 cells with active phosphatase on the cell surface, assemblies with granular morphology first formed on the cell membranes, followed by a transformation into nanofibers and accumulation in cells, which induced Saos-2 cell death eventually. Overall, we provided a convenient method to reveal the in situ dynamic nanomorphology transformation of the supramolecular assemblies in a biological environment, in order to decipher their diverse biological activities.The predictive models that describe the fate and transport of radioactive materials in the atmosphere following a nuclear incident (explosion or reactor accident) assume that uranium-bearing particulates would attain chemical equilibrium during vapor condensation. In this study, we show that kinetically driven processes in a system of rapidly decreasing temperature can result in substantial deviations from chemical equilibrium. This can cause uranium to condense out in oxidation states (e.g., UO3 vs UO2) that have different vapor pressures, significantly affecting uranium transport. To demonstrate this, we synthesized uranium oxide nanoparticles using a flow reactor under controlled conditions of temperature, pressure, and oxygen concentration. The atomized chemical reactants passing through an inductively coupled plasma cool from ∼5000 to 1000 K within milliseconds and form nanoparticles inside a flow reactor. The ex situ analysis of particulates by transmission electron microscopy revealed 2-10 nm crystalliare required to fully describe uranium transport subsequent to nuclear incidents.Si-based electrodes offer exceptionally high capacity and energy density for lithium-ion batteries (LIBs),but suffer from poor structural stability and electrical conductivity that hamper their practical applications. To tackle these obstacles, we design a C/polymer bilayer coating deposited on Si-SiOx microparticles. The inner C coating is used to improve electrical conductivity. The outer C-nanoparticle-reinforced polypyrrole (CNP-PPy) is a polymer matrix composite that can minimize the volumetric expansion of Si-SiOx and enhance its structural stability during battery operation. Electrodes made of such robust Si-SiOx@C/CNP-PPy microparticles exhibit excellent cycling performance 83% capacity retention (794 mAh g-1) at a 2 C rate after more than 900 cycles for a coin-type half cell, and 80% capacity retention (with initial energy density of 308 Wh kg-1) after over 1100 cycles for a pouch-type full cell. By comparing the samples with different coatings, an in-depth understanding of the performance enhancement is achieved, i.e., the C/CNP-PPy with cross-link bondings formed in the bilayer coating plays a key role for the improved structural stability. Moreover, a full battery using the Si-SiOx@C/CNP-PPy electrode successfully drives a car model, demonstrating a bright application prospect of the C/polymer bilayer coating strategy to make future commercial LIBs with high stability and energy density.A dual infrared frequency comb spectrometer with heterodyne detection has been used to perform time-resolved electrochemical attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). The measurement of the potential dependent desorption of a monolayer of a pyridine derivative (4-dimethylaminopyridine, DMAP) with time resolution as high as 4 μs was achieved without the use of step-scan interferometry. An analysis of the detection limit of the method as a function of both time resolution and measurement coadditions is provided and compared to step-scan experiments of an equivalent system. Dual frequency comb spectroscopy is shown to be highly amenable to time-resolved ATR-SEIRAS. Microsecond resolved spectra can be obtained with high spectral resolution and fractional monolayer detection limits in a total experimental duration that is 2 orders of magnitude less than the equivalent step-scan experiment.Solid electrolytes have attracted considerable interest in rechargeable batteries because of their potential high safety, inhibition of electrode dissolution, and large electrochemical window. However, their development in some new battery concepts such as room-temperature halide ion batteries has been scarce. Herein, we develop the inorganic halide perovskite of CsSnCl3 prepared by mechanical milling and subsequent mild heat treatment as the potential solid electrolyte for chloride ion batteries (CIB). Benefiting from its high structural stability against a phase transformation to monoclinic structure at room temperature, the as-prepared cubic CsSnCl3 achieves an impressive electrochemical performance with the highest ionic conductivity of 3.6 × 10-4 S cm-1 and a large electrochemical window of about 6.1 V at 298 K. These values are much higher than 1.2 × 10-5 S cm-1 and 4.25 V of the previously reported solid polymer electrolyte for CIBs. Importantly, the chloride ion transfer of the as-prepared CsSnCl3 electrolyte is demonstrated by employing the electrode couples of SnCl2/Sn and BiCl3/Bi.Terpenoids constitute a structurally diverse group of natural products with wide applications in the pharmaceutical, nutritional, flavor and fragrance industries. Fungi are known to produce a large variety of terpenoids, yet fungal terpene synthases remain largely unexploited. Here, we report the sesquiterpene network and gene clusters of the black poplar mushroom Agrocybe aegerita. Among 11 putative sesquiterpene synthases (STSs) identified in its genome, nine are functional, including two novel synthases producing viridiflorol and viridiflorene. On this basis, an additional 1133 STS homologues from higher fungi have been curated and used for a sequence similarity network to probe isofunctional STS groups. With the focus on two STS groups, one producing viridiflorene/viridiflorol and one Δ6-protoilludene, the isofunctionality was probed and verified. Three new Δ6-protoilludene synthases and two new viridflorene/viridiflorol synthases from five different fungi were correctly predicted. The study herein serves as a fundamental predictive framework for the discovery of fungal STSs and biosynthesis of novel terpenoids. Furthermore, it becomes clear that fungal STS function differs between the phyla Ascomycota and Basidiomycota with the latter phylum being more dominant in the overall number and variability. This study aims to encourage the scientific community to further work on fungal STS and the products, biological functions, and potential applications of this vast source of natural products.The continuous evolution of influenza A virus (IAV) requires the influenza vaccine formulations to be updated annually to provide adequate protection. Recombinant protein-based vaccines provide safer, faster, and a more scalable alternative to the conventional embryonated egg approach for developing vaccines. However, these vaccines are typically poorer in immunogenicity than the vaccines containing inactivated or attenuated influenza viruses and require administration of a large antigen dosage together with potent adjuvants. The presentation of protein antigens on the surface of virus-like particles (VLP) provides an attractive strategy to rapidly induce stronger antigen-specific immune responses. Here we have examined the immunogenic potential and protective efficacy of P22 VLPs conjugated with multiple copies of the globular head domain of the hemagglutinin (HA) protein from the PR8 strain of IAV in a murine model of influenza pathogenesis. Using a covalent attachment strategy (SpyTag/SpyCatcher), we conjugated the HA globular head, which was recombinantly expressed in a genetically modified E.