-
Ulrich Landry opublikował 5 miesięcy, 1 tydzień temu
Moreover, non-photochemical quenching, namely pNPQ, revealed the ability of anthocyanins to photoprotect photosystem II from supernumerary photons reaching the chloroplast, whose function was compromised by girdling. The present study provides a starting point to understand the possible link between photosynthesis regulation through sugar signalling and anthocyanin upregulation. Various abiotic stresses, including high salinity, affect the growth and yield of crop plants. We isolated a gene, TaPUB26, from wheat that encodes a protein containing a U-box domain and armadillo (ARM) repeats. The TaPUB26 transcript levels were upregulated by high salinity, temperature, drought and phytohormones, suggesting the involvement of TaPUB26 in abiotic stress responses. An in vitro ubiquitination assay revealed that TaPUB26 is an E3 ubiquitin ligase. We overexpressed TaPUB26 in Brachypodium distachyon to evaluate TaPUB26 regulation of salt stress tolerance. Compared with the wild type (WT) line, the overexpression lines showed higher salt stress sensitivity under salt stress conditions, but lower chlorophyll (Chl) content, lower photosynthetic levels and overall reduced salt stress tolerance. Additionally, the transgenic plants showed more severe membrane damage, lower antioxidant enzyme activity and more reactive oxygen species (ROS) accumulation than WT plants under salt stress, which might be related to the changes in the expression levels of some antioxidant genes. In addition, the transgenic plants also had higher Na+ and lower K+ contents, thus maintaining a higher cytosolic Na+/K+ ratio in leaves and roots than that in WT plants. Further analysis of the molecular mechanisms showed that TaPUB26 interacted with TaRPT2a, an ATPase subunit of the 26S proteasome complex in wheat. We speculated that TaPUB26 negatively regulates salt stress tolerance by interacting with other proteins, such as TaRPT2a, and that this mechanism involves altered antioxidant competition and cytosolic Na+/K+ equilibrium. Fagopyrum cymosum has been considered as a traditional medicinal plant that belongs to Fagopyrum, which has exhibited great pharmaceutical potential due to its abundant flavonoid accumulation. The hairy roots induced by Agrobacterium rhizogenes has been utilized to produce valuable specialized metabolites or reveals plant metabolic processes, whereas the underlying regulatory networks of flavonoid biosynthesis in hairy roots of F. cymosum remained unexplored. Here, the regulatory transcription factor TrMYB4 cloned from Trifolium repens with purple striped leaves was considered to investigate the mechanism of flavonoids biosynthesis in hairy roots of F. cymosum. Results showed that the expression of key genes involved in rutin biosynthesis pathway from TrMYB4 hairy roots were significantly up-regulated compared with non-transgenic hairy roots, while the content of total flavonoids and rutin in TrMYB4 hairy roots also increased consistently. It revealed the TrMYB4 transcription factor could regulate the rutin biosynthesis in F. cymosum. Meanwhile, our research provided a theoretical reference for the industrial production of rutin using F. cymosum hairy roots. V.Triterpenoids produced by the secondary metabolism of Betula platyphylla Suk. exhibit important pharmacological activities, such as tumor inhibition, anti-HIV, and defense against pathogens, but the yield of natural synthesis is low, which is insufficient to meet people’s needs. In this study, we identified two OSC genes of birch, named as BpCAS and Bpβ-AS, respectively. The expression of BpCAS and Bpβ-AS were higher levels in roots and in stems, respectively, and they induced expression in response to methyl jasmonate (MeJA), gibberellin (GA3), abscisic acid (ABA), ethylene and mechanical damage. The function of the two genes in the triterpene synthesis of birch was identified by reverse genetics. The inhibition of Bpβ-AS gene positively regulates synthesis of betulinic acid. BpCAS interference can significantly promote the upregulation of lupeol synthase gene (BPW) and β-amyrin synthase gene(BPY), and conversion of 2,3-oxidosqualene to the downstream products betulinic acid and oleanolic acid. This study provided a basis for the genetic improvement of triterpenoid synthesis in birch through genetic engineering. The obtained transgenic birch and suspension cells served as material resources for birch triterpenoid applications in further. Tomato fruit ripening is regulated by transcription factors (TFs), their downstream effector genes, and the ethylene biosynthesis and signalling pathway. Spontaneous non-ripening mutants ripening inhibitor (rin), non-ripening (nor) and Colorless non-ripening (Cnr) correspond with mutations in or near the TF-encoding genes MADS-RIN, NAC-NOR and SPL-CNR, respectively. Here, we produced heterozygous single and double mutants of rin, nor and Cnr and evaluated their functions and genetic interactions in the same genetic background. We showed how these mutations interact at the level of phenotype, individual effector gene expression, and sensory and quality aspects, in a dose-dependent manner. Rin and nor have broadly similar quantitative effects on all aspects, demonstrating their additivity in fruit ripening regulation. We also found that the Cnr allele is epistatic to rin and nor and that its pleiotropic effects on fruit size and volatile production, in contrast to the well-known dominant effect on ripening, are incompletely dominant, or recessive. Both salicylic acid (SA) and ethylene induce stomatal closure and positively regulate stomatal immunity, but their interactions in guard cell signaling are unclear. Here, we observed that SA induced the expression of ethylene biosynthetic genes; the production of ethylene, reactive oxygen species (ROS) and nitric oxide (NO); and stomatal closure in Arabidopsis thaliana. However, SA-induced stomatal closure was inhibited by an ethylene biosynthetic inhibitor and mutations in ethylene biosynthetic genes, ethylene-signaling genes [RESPONSE TO ANTAGONIST 1 (RAN1), ETHYLENE RESPONSE 1 (ETR1), ETHYLENE INSENSITIVE 2 (EIN2), EIN3 and ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2)], NADPH oxidase genes [ATRBOHD and ATRBOHF], and nitrate reductase genes (NIA1 and NIA2). Furthermore, SA-triggered ROS production in guard cells was impaired in ran1, etr1, AtrbohD and AtrbohF, but not in ein2, ein3 or arr2. SA-triggered NO production was impaired in all ethylene-signaling mutants tested and in nia1 and nia2. The stomata of mutants for CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) showed constitutive ROS and NO production and closure. These results indicate that ethylene mediates SA-induced stomatal closure by activating ATRBOHD/F-mediated ROS synthesis in an RAN1-, ETR1- and CTR1-dependent manner. This in turn induces NIA1/2-mediated NO production and subsequent stomatal closure via the ETR1, EIN2, EIN3 and ARR2-dependent pathway(s). German chamomile (Matricaria chamomilla L.) is one of the most ancient medicinal species in the world and terpenoids from their flowers have important medicinal value. We cloned three sesquiterpene synthase genes, McGDS1, McGDS2 and McGDS3, and performed sequence alignment and phylogenetic analysis. The encoded proteins possess three conserved structural features an RRxxxxxxxxW motif, an RxR motif, and a DDxxD motif. McGDS1, McGDS2 and McGDS3 were confirmed to be (E)-farnesene synthase, germacrene D synthase, and germacrene A synthase, respectively. Subcellular localization revealed diffuse GFP reporter-gene signals in the cytoplasm and nucleus. qPCR indicated that McGDS1, McGDS2 and McGDS3, were more highly expressed in young flowers than in old flowers and the expression was highly correlated with amounts of the end-product essential oils ((E)-β-farnesene, germacrene D and β-elemene), with coefficients of 0.76, 0.83 and 0.68, respectively. We also established a transformation system for chamomile hairy roots. The overexpression of McGDS1, McGDS2 and McGDS3 resulted in γ-muurolene accumulation in hairy roots. The activity of three aphid alarm pheromones here forms the molecular basis for the study of the biosynthesis and regulation of volatile terpenes. Transformation of chamomile hairy roots provides a simple system in which to study terpene biosynthesis in chamomile. Glutathione reductase (GR; EC 1.6.4.2) is a key NADPH-dependent flavo-protein oxidoreductase which can catalyze the oxidized glutathione (GSSG) to reduced glutathione (GSH) to protect plant cells from oxidative damage induced by Reactive oxygen species (ROS) burst. To investigate the biochemical characteristics and functional divergence of Populus GR family, three GR genes (PtGR1.1/1.2/2) were cloned from Populus trichocarpa and their biochemical characteristics were analyzed in this study. All the three genes were expressed in root, stem, leaf and bud, and the expression of PtGR genes were general upregulated under salicylic acid and alamethicin treatment. PtGR1.1 and PtGR1.2 were localized in cytoplasm, while PtGR2 was in chloroplast. The three PtGR proteins showed different enzymatic activities, apparent kinetic characteristic and thermal stability profiles. However, they have similar bivalent metal ions (Cu2+, Cd2+, Zn2+ and Pb2+) sensitivity and optimum pH profiles. Our study sheds light on a comprehensive information of glutathione reductase family in P. trichocarpa, and proved PtGR genes play critical roles when suffering different stresses. As the major nutritional component in soybean seeds storage proteins are initially synthesized on the endoplasmic reticulum as precursors and subsequently delivered to protein storage vacuoles (PSVs) via the Golgi-mediated pathway where they are converted into mature subunits and accumulated. However, the molecular machinery required for storage protein trafficking in soybean remains largely unknown. In this study, we cloned the sole soybean homolog of OsGPA3 that encodes a plant-unique kelch-repeat regulator of post-Golgi vesicular traffic for rice storage protein sorting. A complementation test showed that GmGPA3 could rescue the rice gpa3 mutant. Biochemical assays verified that GmGPA3 physically interacts with GmRab5 and its guanine exchange factor (GEF) GmVPS9. Expression of GmGPA3 had no obvious effect on the GEF activity of GmVPS9 toward GmRab5a. Notably, knock-down of GmGPA3 disrupted the trafficking of mmRFP-CT10 (an artificial cargo destined for PSVs) in developing soybean cotyledons. We identified two putative GmGPA3 interacting partners (GmGMG3 and GmGMG11) by screening a yeast cDNA library. Overexpression of GmGPA3 or GmGMG3 caused shrunken cotyledon cells. Our overall results suggested that GmGPA3 plays an important role in cell growth and development, in addition to its conserved role in mediating storage protein trafficking in soybean cotyledons. Plant specialized terpenoids are natural products that have no obvious role in growth and development, but play many important functional roles to improve the plant’s overall fitness. Besides, plant specialized terpenoids have immense value to humans due to their applications in fragrance, flavor, cosmetic, and biofuel industries. Understanding the fundamental aspects involved in the biosynthesis and regulation of these high-value molecules in plants not only paves the path to enhance plant traits, but also facilitates homologous or heterologous engineering for overproduction of target molecules of importance. Recent developments in functional genomics and high-throughput analytical techniques have led to unraveling of several novel aspects involved in the biosynthesis and regulation of plant specialized terpenoids. The knowledge thus derived has been successfully utilized to produce target specialized terpenoids of plant origin in homologous or heterologous host systems by metabolic engineering and synthetic biology approaches.