-
Murphy Miller opublikował 1 rok, 3 miesiące temu
Sialic acid immunoglobulin-like lectin (Siglec) family molecules are immune regulatory receptors that bind to specific molecules containing sialic acids. Varicella-zoster virus (VZV), a member of the herpesvirus family, infects hematopoietic cells and spreads throughout the body, causing chickenpox, shingles, and, sometimes fatal encephalomyelitis. However, the cellular entry receptors that are required for VZV to infect hematopoietic cells have remained unclear. Here, we found that Siglec-7, mainly expressed on hematopoietic cells, binds to VZV envelope glycoprotein B in a sialic acid-dependent manner. Furthermore, Siglec-7 mediated VZV infection by inducing membrane fusion. Our findings provide the first evidence for a molecular mechanism by which VZV infects hematopoietic cells.Schwann cells play an important role in peripheral myelination, and dysfunction of these cells leads to axonal damage. Schwann cells degenerate following peripheral nerve injury. Immature Schwann cells proliferate, differentiate, and support axonal regeneration and extension during recovery. There are a lot of intracellular signals involved in the myelination process. Although serum- and glucocorticoid-inducible kinase (SGK1) in Schwann cells is supposedly involved in developmental myelination, its significance during peripheral nerve injury and repair remains unknown. In this study, we examined the dynamics of SGK1 during peripheral nerve repair and the potential role of SGK in the process. Axonal crush injury was first generated in the right sciatic nerve under anesthesia in mice, which exhibited apparent paralysis and subsequent recovery of the injured hindlimbs. Immunohistochemical analysis revealed the appearance of glial fibrillary acidic protein (GFAP)-positive immature Schwann cells around injured nerves, and SGK1 was present in these cells. Next, we employed S16 cells, a Schwann cell line, to explore the impact of SGK1 on Schwann cells. Administration of the SGK inhibitor gsk650394 decreased cell proliferation and increased cell size. SGK inhibition did not cause cellular injury, suggesting that it suppresses proliferation and enlarges Schwann cells without causing cell death. Furthermore, quantitative PCR and immunoblotting revealed that SGK inhibition upregulated the gene expression of BDNF, MBP, and Krox20, which are facilitating factors for myelination and neural regeneration, and downregulated that of Sox10. Taken together, these findings indicate that SGK1 inactivation in Schwann cells diverts cell fate from proliferation to differentiation.The aim of this work was to evaluate Gd-FC705, a prostate-specific membrane antigen (PSMA)-targeted MRI contrast agent. The r1 and r2 relaxivities of Gd-FC705 are 5.94 mM-1s-1 and 17.77 mM-1s-1, respectively, in HSA solution (0.67 mM) at 3 T, which are higher than those of Gd-DOTA. Specific targeting efficacy was found with a 3-fold enhancement between PSMA-negative (PSMA-) and PSMA-positive (PSMA+) cells. The in vivo targeting and bio-distribution of Gd-FC705 were further confirmed using nude mice bearing PC3 human prostate cancer xenografts, which showed a 2-fold increase in the contrast-to-noise ratio (CNR) for PSMA+ tumors compared to PSMA- tumors 1 h post injection and a longer circulation time than Gd-DOTA. These results demonstrate that Gd-FC705 has great potential as a diagnostic agent for prostate cancer.Bacillus subtilis is a gram-positive bacterium that has developed to coordinate gene expression and to survive against changes of nutrients and toxic chemicals. Flavonoids are exuded by plant cells and are abundant in the soil. To counteract the antibacterial effects of flavonoids, B. subtilis expresses flavonoid-detoxifying enzymes, and their expression is negatively regulated by transcription factors, including YetL. YetL was shown to control B. subtilis growth through the promoter regions of yetL and yetM genes in response to some flavonoids. Despite the functional significance of the YetL transcription factor in bacterial survival, no structural information is available for YetL. Here, we report the crystal structure of YetL and propose a flavonoid-induced regulatory mechanism. The YetL structure contains the canonical winged helix-turn-helix motif of the MarR superfamily but distinctly presents an additional N-terminal helix. In the dimeric assembly of YetL, the H1 helix intersects the YetL dimer and contributes to extensive intersubunit interactions. As a transcription factor, YetL recognizes a 28-mer operator of double-stranded DNA that contains a palindromic sequence. Moreover, our comparative structural analysis of YetL and other MarR members allows us to propose a flavonoid-induced transcription regulatory mechanism that is used for bacterial adaptation to environmental changes and stresses.
Chondrocytes senescence is closely related to orthopedic degenerative diseases such as osteoarthritis (OA). Calcium ions (Ca
) accumulation is a common phenomenon in senescent cells, which causes mitochondrial dysfunction and ROS generation to promote the process of senescence. Piezo1 is a mechanosensitive ion channel with a unique affinity for Ca
. However, the role of Piezo1-mediated Ca
accumulation in senescent chondrocytes remains unclear.
First, the senescent chondrocytes model was constructed by subcultring primary chondrocytes (P0) to 5th passages (P5). CCK8 and clone formation assay was utilized to assess the proliferation capacity of the chondrocytes. The intracellular Ca
and ROS concentrations were evaluated by the Fluo-4-AM Ca
probe and DCFH-DA fluorescent probe. β-Galactosidase staining was used to assess the percentage of senescent cells. The expression of Piezo1, senescence-related and senescence-associated secretory phenotype (SASP)-related genes were detected by real-time quantitat treating senescence-related OA.
This study confirmed for the first time that the high expression of Piezo1 mediated senescence in chondrocytes through Ca2+ accumulation. Piezo1 may be a new target for treating senescence-related OA.The mitochondrial enzyme SIRT3 is an NAD+-dependent deacetylase important in cell metabolism, and a decline in its protein expression or activity has been linked with insulin resistance in obesity, ageing and type 2 diabetes. While studies in SIRT3 knockout mice have dramatically improved our understanding of the function of SIRT3, the impact of increasing SIRT3 levels remains under-examined. In this study we investigated the effects of liver-specific SIRT3 overexpression in mice on mitochondrial function and metabolic profile in both isolated hepatocytes and in vivo. Primary hepatocytes overexpressing SIRT3 displayed increased oxygen consumption and a reduction in triglyceride accumulation. In mice with hepatic SIRT3 overexpression, increased fasting β-hydroxybutyrate levels were observed, coupled with an increase in oxygen consumption in isolated mitochondria and increased substrate utilization in liver homogenates. However, metabolic profiling of mice exposed to either chow or high-fat diet revealed no effect of hepatic SIRT3 overexpression on glucose tolerance, body composition or tissue triglyceride accumulation. These findings suggest limited whole-body benefit of increasing hepatic SIRT3 during the development of diet-induced insulin resistance.CD8+ T-cell responses exert strong suppressive pressure on viral replication and select for viral escape mutations in HIV infection. Multiple viral epitopes restricted by major histocompatibility complex class I (MHC-I) are targeted by CD8+ T cells. Sequential selection of viral escape mutations in individual epitope-coding regions could result in failure in CD8+ T cell-based viral control leading to disease progression. However, how this sequential selection of epitope mutations occurs has not fully been determined. Here, we examined sequential selection of viral mutations in seven CD8+ T-cell epitope-coding regions in a macaque AIDS model of simian immunodeficiency virus mac239 (SIVmac239) infection. In seven SIVmac239-infected Burmese rhesus macaques possessing MHC-I haplotype 90-120-Ia, selection of viral mutations was observed in five to seven of the seven 90-120-Ia-associated CD8+ T-cell epitope-coding regions in a year post-infection. Of the seven CD8+ T-cell epitopes, viral mutation selection was detected first at two epitopes, Gag206-216 and Nef9-19, but was found finally at Vif114-124 epitope in most animals. Viral loads in 6 months were significantly associated with the number of mutated CD8+ T-cell epitope-coding regions 1 year post-infection. Tetramer analysis revealed early induction of Gag241-249 specific CD8+ T-cell responses, which did not always result in early selection of viral mutations in the Gag241-249 epitope, suggesting that the order of epitope mutation selection may not be determined only by immunodominance. This SIV infection model using 90-120-Ia-positive macaques would be useful for analysis of the determinants for sequential epitope mutation selection, contributing to our understanding of virus-host CD8+ T-cell interaction in HIV infection.Deubiquitinases (DUBs) play critical roles in tumorigenesis and are emerging as potential therapeutic targets. However, it remains less clear which DUBs may play important roles and represent a realistic vulnerability for a particular type of tumor. Here we revealed that Ubiquitin Specific Peptidase 49 (USP49) is transcriptionally activated by c-MYC in colorectal cancer (CRC), and CRC patients with elevated USP49 levels exhibited significantly shorter survival. Knockdown of USP49 markedly inhibited CRC cell proliferation, colony formation, and chemotherapy resistance in vitro. Investigation of mechanisms unravels that USP49 deubiquitinates and stabilizes Bcl-2-Associated Athanogene 2 (BAG2), a well-known protein that antagonizes apoptosis and enables adaptive response of CRC cells. This study identified a novel mechanism by which USP49 promotes CRC cell survival by stabilizing BAG2 through the c-MYC-USP49-BAG2 axis, indicating that USP49 may become a potential therapeutic target for CRC.When performing western blots for protein detection using the classical Laemmli method, experimenters often encounter difficulties with the detection of transmembrane proteins involved in lipid or fatty acid metabolism. A crucial phase in sample preparation is heating the samples to 100 °C in a Laemmli sample buffer containing SDS before separation by polyacrylamide gel electrophoresis (PAGE). In the current study, the analysis of several proteins was performed following modifications of the heating step during sample preparation. Multiple samples of the human Jurkat cell line were prepared using commercial or homemade Laemmli sample buffer. Samples were subjected to incubation at different temperatures for varying periods of time prior to separation by SDS-PAGE, transfer onto PVDF membranes and detection with specific antibodies. In samples incubated at temperatures of 25 °C, 40 °C, 70 °C and 100 °C, detection of the transmembrane protein elongase of long chain fatty acids 5 (ELOVL5) significantly decreased this study indicates that sample heating can drastically affect the ability to detect proteins following separation by SDS-PAGE. This has implications for any detection methods that follow SDS-PAGE.


