-
Stage Hussein opublikował 1 rok, 3 miesiące temu
Site-specific studies are required to identify suitable drought indices (DIs) for assessing and predicting drought-related impacts. This study presents a benchmark of eight DIs and 19 large-scale climate indices (CIs) to monitor agricultural drought in Argentina. First, the link between the CIs and DIs was investigated at the departmental-administrative level and at different temporal scales. Then, the effectiveness of the DIs in explaining the variability of crop yields, understood as impacts of agricultural droughts, was evaluated using statistical regression models. Soybeans were used as the reference crop. Additionally, the performances of DIs and CIs in explaining the variability of crop yields were compared. The CIs located in the Pacific Ocean (El Niño 3.4 and El Niño 4) were found to have the best correlations with the DIs (R values up to 0.49). These relationships were stronger with longer temporal aggregations and during the wet and hot seasons (summer), showing a significant role in the triggering of droughts in Argentina. The DIs that best corelated with CIs were those that included temperature in their calculations (STCI, SVHI, and SPEI). The impacts of droughts on soybean production were better explained using DIs than with CIs (up to 89% vs 8% of variability explained) as predictors of the statistical models. SVHI-6 and SPEI-6, depending on the area of interest, were, during the phenological period of crop growth (summer), the most effective DIs in explaining annual variations in soybean yields. The results may be of interest in water resource management, drought risk management, and the Argentinean soybean production sector. Furthermore, they provide a foundation for future studies aimed at forecasting agricultural droughts and their impacts.Microbial colonization is vital for physiological equilibrium in animals. However, the impact of maternal and environmental microbes on microbial succession in the early developmental stages of Macrobrachium rosenbergii remains elusive. In this study, the effects of maternal and environmental microbes on the embryonic and larval microbiota of M. rosenbergii were evaluated by high-throughput sequencing. The results showed that Proteobacteria and Firmicutes were the dominant phyla in the intestine, gonads, and hepatopancreases of maternal prawn. In addition, Actinobacteria was dominant in the intestine while Actinobacteria, Bacteroidetes, and Acidobacteria were dominant in gonads of maternal prawn. During the embryonic stages, Proteobacteria, Actinobacteria, and Bacteroidetes became the dominant phyla. In post-larval stages, Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes tended to dominate. In the water, Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla at 7, 14, and 21 dph water. Maternal microbes prominently impacted the microbial composition during the embryonic stages. Specifically, microbial colonization during embryonic stages was directly related to the maternal hepatopancreas according to source-tracking models. When the post-larvae developed to 7 days, the high contribution to the larval microbiota mimicked the environment. These results indicated that microbial colonization in embryonic and post-larval stages was attributed to the maternal and environmental microbe community, respectively. This study provides a theoretical basis for microbial community manipulation to promote prawn growth and physiological health in aquaculture.Layered black phosphorus (LBP) is regarded as a promising two-dimensional nanomaterial in various application fields. As bare LBP is unstable in humid environment, many modification methods have been developed recently. However, environmental risks of modified LBP nanomaterials are largely unknown. Herein, by sonication and in-situ surface-confined synthesis, polyvinylpyrrolidone (PVP) coated LBP (LBP/PVP), and zeolitic imidazolate framework-67 (ZIF-67) modified LBP (LBP/PVP-ZIF-67) nanomaterials were synthesized. Environmental stability and toxicity of the modified nanomaterials were compared with bare LBP. Results show that LBP/PVP-ZIF-67 exhibits excellent photothermal performance, and higher potential in electrochemical hydrogen evolution than bare LBP or LBP/PVP. Characteristic visible light absorbance at 593 nm was introduced into the nanomaterial by ZIF-67. LBP/PVP has stability in aqueous environment or cytotoxicity similar to LBP. LBP/PVP-ZIF-67 is completely stable in water within 120 h, in contrast to over 30% degradation of LBP or LBP/PVP. More than 50% of LBP in the LBP/PVP-ZIF-67 can degrade to dissolvable phosphorus in oxygenated water after 17 days, indicating the nanomaterial will not be persistent in the environment. Moreover, modification with ZIF-67 can reduce cytotoxicity of LBP. Therefore, this study develops a safe strategy to modify LBP and provides basic information for ecological risk assessment of LBP based materials.Global warming is one of the major threats to human survival and social development. Agriculture, as an important source of greenhouse gas (GHG) emissions, cannot be ignored. China is the world’s largest carbon emitter, and if it does not actively participate, other countries in the world will not be able to achieve the 1.5 degree temperature control target. Hence, the issue of China’s agricultural emissions reduction is worthy of attention. As part of this study a framework for estimating agricultural GHG emissions was constructed. A directional distance function was then used to estimate the cost of emission reduction from the perspective of economic output. Furthermore, through the economic elasticity of shadow prices, agricultural economic development and emission reduction were included in the same framework to study the regional gap of agricultural emission reduction models. Finally, reducing agricultural emission reduction costs was discussed from the perspective of economy, technology, and policy. We found that (1) Agricultural emission reduction costs have phased characteristics and regional differences, and differentiated emission reduction cost improvement measures can help with efficient emission reduction. (2) The emission reduction cost in developed regions is more likely to be affected by technological progress and the strength of environmental governance by government. The emission reduction cost in regions dominated by planting is affected by the industrial structure and energy consumption structure. The emission reduction cost in underdeveloped regions is affected by the economic level. (3) We must give full play to the leading role of benchmarking regions in reducing emissions.Plastic has been an environmental pollutant far longer than claimed by the first reports surfacing in 1979, meaning some plastic materials have been decaying in nature for decades. Nevertheless, the threat posed to biota is not fully understood, especially from aged microplastic. The question considered in this study was whether the adverse effects of new plastic differ from those of old plastic material. Therefore, the morphological and physiological effects on Lepidium sativum with exposure to both new and aged polycarbonate were considered against a known stressor leaching from polycarbonate with time, bisphenol-A. Exposure to new and short-term aged polycarbonate (up to 80 days) elicited the most severe effects such as germination inhibition, reduced seedling growth, decreased chlorophyll concentrations, and increased catalase activity. These adverse effects in L. sativum associated with polycarbonate exposure were reduced as a function of the ageing time applied to the polycarbonate. The chemical substances that lend new polycarbonate material its toxicity were likely leached with time during the ageing process. Based on the results obtained, temperature and humidity based artificial ageing significantly reduced the phytotoxicity of the microplastic particles.Debris flows are a common natural trigger of disasters in mountainous areas, and check dams are standard structural measures for controlling debris flows. Despite their prevalence in debris flow-prone areas worldwide, the capacity of check dams is still calculated using empirical formulas, which lead to large calculation errors. This paper proposes a new method that uses GIS to calculating the design storage capacity of a check dam in the debris flow-prone Cutou Gully in Wenchuan County, China. Large-scale digital surface models derived from unmanned aerial vehicle imagery and ground surveys identify local topographic changes in the debris flow path and develop appropriate maintenance plans for check dams. The measured storage capacity of the check dam is determined by analyzing the DEM differences. This study uses the newly proposed method to calculate the design storage capacity of the check dam. The accuracy of the calculation results was evaluated using the checkpoint method, and the results showed that the design and measured siltation surface errors ranged from -1.16-2.96 m, with a root mean square error of 0.93 m. The design capacity of the check dam is 33.6× 104 m3, and the actual capacity is 36.7× 104 m3, with an absolute error of 3.1× 104 m3 and relative error of 8.6%. The results prove the validity of the proposed calculation method; moreover, this study shows that the new method is accurate, easy to operate, and highly efficient for visualizing the spatial distribution of the siltation depth behind the check dam. This work will help improve future engineering decisions, design strategies, and find optimal design solutions to minimize the risk of debris flow hazards.The coexistence of antibiotics, heavy metals and microplastics is becoming commonplace and may affect antibiotic resistance in manured soil. The current understanding of the role of microplastics in soil with combined pollution of antibiotics, heavy metals and antibiotic resistance genes (ARGs) is limited. Here, the effects of the coexistence of tetracycline (TC), Cu and environmental microplastics (EM) on the fate of nine ARGs and three heavy metal resistance genes in agricultural soil were investigated by batch and microcosm experiments. EM were obtained by exposing virgin microplastics to soil environments for 80 days, which exhibited higher adsorption affinity for Cu and TC than soil particles and virgin microplastics. 1% EM in soil increased bioavailable concentrations of TC and Cu by 79-138% and 88-135%, respectively, and decreased TC dissipation from 11.79 mg kg-1 to 3.08 mg kg-1. Correspondingly, the total relative abundances of target ARGs increased by 219-348%. The significant correlations of tetG, tetB, tetQ, sul2, sul1 and intl1 with bioavailable fractions of TC and Cu in soil environments were revealed by network analysis. Moreover, scanning electron micrographs showed the special plastisphere around EM. Attributed to the biofilm generation and higher pollutant accumulation in the plastisphere, EM could be the source of antibiotic-resistant bacteria and ARGs in soil environments. Structure equation models further identified that indirect effects of EM acted a major role in the propagation of ARGs by altering soil properties, soil microbial diversity and intl1 abundance. This study revealed that EM could increase the stimulative effects of Cu and TC on antibiotic resistance and magnify the environmental risk of manure application in soil environments.There exist several well-known methods with varying maturity for capturing carbon dioxide from emission sources of different concentrations, including absorption, adsorption, cryogenics and membrane separation, among others. The capture and separation steps can produce almost pure CO2, but at substantial cost for being conditioned for transport and final utilization, with high economical risks to be considered. A possible way for the elimination of this conditioning and cost is direct CO2 utilization, whether on-site in a further process but within the same plant, or in-situ, coupling both capture and conversion in the same unit. This approach is usually called integrated carbon capture and utilization (ICCU) or integrated carbon capture and conversion (ICCC), and has lately started receiving considerable attention in many circles. As CO2 is already industrially employed in other sectors, such as food preservation, water treatment and conversion to high added-value chemicals and fuels such as methanol, methane, etc., among others, it is of great interest to explore the global ICCC approach. Catalytic-based processes play a key role in CO2 conversion, and different technologies are gaining great attention from both academia and industry. However, the 'big picture of ICCU’ and in which technology the efforts should focus on at large scale is still unclear. This review analyzes some promising concepts of ICCU specifically on CO2 catalytic conversion, highlighting their current commercial relevance as well as challenges that have to be faced today and in the next future.Ultragravity waves with a period of less then 1 s are often ignored in coastal engineering because they have little effect on coastal structures. In this study, we demonstrate that even though the height of short-period waves is small, the waves cause young mangroves to oscillate greatly. Indoor and onsite mangrove growth tests, oscillation tests, wave experiments, and theoretical analyses were conducted on a mangrove species (Kandelia obovata) to determine the oscillatory characteristics of young mangroves when exposed to small waves. Natural period of oscillation of the young mangrove shoots was less than 0.5 s. Their resonance occurred when the wave period was a multiple of the natural period of oscillation of the mangrove shoots. Because of resonance, the horizontal acceleration of the mangrove leaves was calculated to reach twice the acceleration of gravity. If these waves act for a long time, young leaves can fall. A test performed on a mangrove forest in Amami Island in Japan revealed that although the mangrove heights grew rapidly, their stem thickness did not change substantially. Thus, the young mangroves need to gain rigidity in a short period to withstand short-period waves. To increase the survival rate of the young mangroves, short-period waves, whose period is close to the natural period of oscillation of the mangrove stems, could be avoided by installing a small breakwater. However, stem oscillations may positively affect leaf photosynthesis because small waves have the same effect as a gentle breeze and can promote the growth of young mangroves. Therefore, further studies on ultragravity waves and the growth of young mangroves are required.Especially added on many industrial and domestic products as flame retardants (FRs), polybrominated diphenyl ethers (PBDEs) are among the chemicals of high environmental concern because of their potential harmfulness for environmental and human health. Seafood consumption is considered the main source of PBDEs and their methoxylated congeners (MeO-BDEs) for humans. The present study aims to investigate the seasonal occurrence of six PBDEs and eight MeO-BDEs congeners using Douro river biota (different trophic levels) as sentinels, as well as to evaluate the human exposure risk to PBDEs through seafood consumption. Biota samples (n = 273) were collected from one of the most important Portuguese estuaries in the north-western coast of Portugal at four different seasons (2019-2020). The analyses were performed by an environmental-friendly extraction procedure followed by Gas Chromatography coupled to a triple quadrupole detector (GC-MS/MS). PBDEs were detected in all seafood samples analysed, with means ranging from 0.02 ng g-1 ww (flounder in autumn) to 3.75 ng g-1 ww (mussel in winter). Levels of lower-brominated PBDE congeners were significantly higher than higher-brominated ones in all seasons (p less then 0.01). MeO-BDEs ranged from 0.001 ng g-1 ww (grey mullet in summer) to 5.66 ng g-1 ww (green crab in spring). Crabs and mussels presented the highest means of PBDEs and MeO-BDEs. Regarding the health risk assessment of the studied PBDE congeners (47, 99, and 153), consumption of Douro river fish is not a case of concern for consumers.
Low-grade systemic inflammation evidenced by elevated serum high-sensitivity C-reactive protein (hsCRP) levels can be a biomarker for depression. This study aimed to investigate the association between serum hsCRP levels and depressive symptoms and to explore the potential moderating effects of age, sex, body mass index (BMI), and aerobic physical activity on the association.
Data of 10,702 adults (≥ 19 years) were obtained from the nationwide cross-sectional Korea National Health and Nutrition Examination Surveys of 2016 and 2018. Significant depressive symptoms were defined as ≥ 10 on the Patient Health Questionnaire-9, and high hsCRP level was defined as > 3.0 mg/L.
Adults with high hsCRP levels were more likely to have depressive symptoms (odds ratio [OR] 1.41, 95% confidence interval [CI] 1.07-1.84) and suicidal ideation (OR 1.39, 95% CI 1.07-1.80) than those with low hsCRP levels. In the age- and sex-stratified analysis, high hsCRP levels were associated with depressive symptoms in the non-geriatric population (age ≤ 64 years) alone, with a higher OR in males than females. In subgroup analyses, the association between them was observed only among obese adults and adults without aerobic physical activity.
Causal interpretation is limited due to the cross-sectional design.
Our results replicate previous findings of an association between high hsCRP levels and depressive symptoms in adults using a large nationally representative sample. The association between them was more prominent in the non-geriatric population, males, obese adults, and those without aerobic physical activity.
Our results replicate previous findings of an association between high hsCRP levels and depressive symptoms in adults using a large nationally representative sample. The association between them was more prominent in the non-geriatric population, males, obese adults, and those without aerobic physical activity.Here, we recognise some of the extraordinary accomplishments of the partnership between Geoff Burnstock and Mollie Holman, and the everlasting impact they both made in autonomic neuroscience in Australia. Much of strength today in autonomic neuroscience can be traced back to a time when Geoff and Mollie commenced their seminal studies on autonomic neuroscience, initially at Oxford, then at The University of Melbourne in the mid 1960’s. Mollie and Geoff published their first paper together, at Oxford, with their then mentor, and doyenne of smooth muscle, Professor Edith Bülbring. They did not always agree on the interpretation of their own scientific findings. Geoff was convinced early on that Adenosine triphosphate (ATP), or a related purine, was an excitatory neurotransmitter at peripheral sympathetic neuroeffector junctions. Mollie was reticent for decades. However, she began to take the notion seriously that ATP maybe a neurotransmitter, when receptors for purines were identified in the 1990’s. What the partnership between Mollie and Geoff taught us in Australia was to not fear respectful criticism, but rather to be receptive to and embrace objective, collegial and constructive scientific peer-review. One of the many great legacies of Geoff and Mollie was the large number of researchers, who were fortunate disciples of their supervision, and who have now themselves gone on to make significant discoveries in autonomic and visceral neuroscience. This review summarizes some of their major legacies and represents a very personal historical perspective of the two authors, pupils respectively of Mollie and Geoff.
Viruses are a common cause of central nervous system (CNS) infections. However, studies of CNS viral pathogens in pediatric patients are poorly explored because viral infections are often erroneously diagnosed as bacterial infections.
299 CNS samples were collected from pediatric patients aged from one month to 14 years old. A total of 140 viral meningitis cases that met the inclusion criteria were included in this study. In 38 of the 140 cerebral spinal fluid (CSF) samples (27.1%), conventional and real-time PCR were used to identify viruses commonly associated with CNS infections.
Among them, 23 patients (16.5%) tested positive for flaviviruses such as dengue, Zika, and yellow fever virus, eight patients (5.7%) were positive for enterovirus (ENTV), and six patients (4.3%) were positive for human herpesvirus 1/2. We also identified one case of dengue virus and ENTV co-infection.
A correlation between clinical symptoms and laboratory findings for the viruses was identified. Our study also reinforces the importance of including viruses in the laboratory diagnosis of CNS infections especially flaviviruses, which assists public health authorities in implementing early interventions.
A correlation between clinical symptoms and laboratory findings for the viruses was identified. Our study also reinforces the importance of including viruses in the laboratory diagnosis of CNS infections especially flaviviruses, which assists public health authorities in implementing early interventions.
Injection laryngoplasty (IL) is considered safe in both the operating room and clinical setting. However, safety data is limited to single-institution studies with reduced sample sizes. The objective of this study is to examine a national database for adverse events related to IL in an effort to further confirm the safety of this procedure and better characterize potential complications.
Retrospective analysis of the Manufacturer and User Facility Device Experience (MAUDE) database for reported adverse events of IL procedures utilizing calcium hydroxyapatite (CAHA), hyaluronic acid (HA) and carboxymethylcellulose (CMC) implants from 2009 to 2020.
We identified 47 reported adverse events. The average patient age was 54years old. 59.3% of patients were female. Adverse events more frequently involved the use of CAHA compared to HA or CMC (n=27, 57.4%, n=13, 27.7% and n=7, 14.9%, respectively). The most common adverse events were laryngeal edema (n=18, 39.1%), improper placement of injected material (n=12, 26.1%), persistent dysphonia (n=13, 28.3%), and post-injection dysphagia or odynophagia (n=11, 23.9%). Major events, defined as requiring emergency room treatment, hospitalization, or surgical intervention accounted for 29 (60.4%) of cases. Four cases of edema required intubation, and one patient necessitated a surgical airway.
Complications arising from IL range from minor events to airway obstruction and may happen with a variety of injectable materials including CAHA, HA and CMC. Few cases of airway obstruction requiring immediate intervention were identified, confirming the safety of IL in both the operative and office setting.
Complications arising from IL range from minor events to airway obstruction and may happen with a variety of injectable materials including CAHA, HA and CMC. Few cases of airway obstruction requiring immediate intervention were identified, confirming the safety of IL in both the operative and office setting.
Otolaryngology is considered high risk for Coronavirus Disease 2019 (COVID-19) exposure and spread. This has led to a transition to telemedicine and directly impacts patient volume, evaluation and management practices. The objective of this study is to determine the impact of COVID-19 on patient characteristics in relation to outpatient attendance, ancillary testing, medical therapy, and surgical decision making.
A retrospective case series at an academic medical center was performed. Outpatient appointments from October 2019 (pre-COVID) and March 16-April 10, 2020 (COVID) were analyzed. Prevalence rates and odds ratios were used to compare demographics, visit characteristics, ancillary tests, medication prescribing, and surgical decisions between telemedicine and in-person visits, before and during COVID.
There was a decrease in scheduled visits during the COVID timeframe, for both in-person and telemedicine visits, with a comparable proportion of no-shows. There was a higher overall percentage of Hispanic/Latino patients who received care during the COVID timeframe (OR=1.43; 95% CI=1.07-1.90) in both groups, although primary language was not significantly associated with attendance. There were fewer ancillary tests ordered (OR=0.54) and more medications prescribed (OR=1.59) during COVID telemedicine visits compared with pre-COVID in-person visits.
COVID-19 has rapidly changed the use of telemedicine. Telemedicine can be used as a tool to reach patients with severe disease burden. Continued healthcare reform, expanded access to affordable care, and efficient use of resources is essential both during the current COVID-19 pandemic and beyond.
IV.
IV.
Hyperuricemia is a growing public health problem with its increasing prevalence. Few studies have investigated the association between sleep duration and hyperuricemia. The objective of this study is to explore whether short sleep duration is an independent risk factor of hyperuricemia in Chinese adults.
The data we analyzed was extracted from the 2009 wave of the China Health and Nutrition Survey. The population we analyzed included 8289 participants aged 18 years or older with sleep of 5-10h per 24h. We categorized the population into three groups by sleep duration 5-6h (short sleeper),7-8h (regular sleeper), and 9-10h (long sleeper). Hyperuricemia was defined as serum uric acid ≥7mg/dL in men and ≥6mg/dL in women.
Among the three groups, 9.8% were short sleepers, 68.4% were regular sleepers and 21.8% were long sleepers. The prevalences of hyperuricemia were 19.5%,15.2% and 15.5% respectively. The risks of hyperuricemia in regular and long sleep groups were lower than short sleep group, and the association remained after adjusting for indexes including age, gender, chronic kidney disease, hypertension, diabetes mellitus, high low-density lipoprotein cholesterol (LDL-c), and obesity. In subgroup analysis, we found the association was still observed in participants without hypertension, diabetes mellitus or obesity.
Our findings suggest that short sleep duration is associated with higher risk of hyperuricemia independently of cardiometabolic risk factors, especially in individuals without traditional hyperuricemia risk factors.
Our findings suggest that short sleep duration is associated with higher risk of hyperuricemia independently of cardiometabolic risk factors, especially in individuals without traditional hyperuricemia risk factors.Supercapacitors are high power energy storage devices, however, their application are remain limited by the low energy density. Developing high capacity electrode materials and constructing devices with high operating voltage are effective ways to solve this problem. Herein, performance of polyaniline (PANI) electrode materials is dramatically enhanced by engineering robust PANI/carbon interfaces, through assembling PANI nanorod array on rose petals derived carbon network (RPDCN). The structure of the PANI is optimized by adjusting the concentration of the aniline precursor. The unique structure enables the prepared PANI/RPDCN composite show a high capacitance of 636 F g-1 at 0.5 A g-1, based on the total weight of PANI and RPDCN substrate. The robust interface effectively prolonged the composite electrode stably cycled for over 2000 cycles at 2 A g-1 with a capacity retention of 89%. When coupled with a hexagonal tungsten oxide (h-WO3) anode, a high-power asymmetric proton supercapacitor with high energy densities (29.0 Wh kg-1/0.61 kW kg-1 and 21.4 Wh kg-1/19.51 kW kg-1) was assembled. This work provides an effective and eco-friendly route toward superior PANI electrodes and proposes a promising high-power energy storage system using proton as working ion.Nanomaterials have shown great potential in cancer therapy, but the phenomenon of poor tumor recognition without cellular organelle accumulation usually leads to reduced therapeutic effects and enhanced side effects. Herein, we resolved this issue by employing a multifunctional peptide coating mainly composed of, from the inside out, a mitochondrial targeting segment, a cathepsin B-responsive segment and a zwitterionic antifouling segment. Then gold nanorods were modified with a peptide via ligand exchange, displaying excellent photothermal property and superior stability both before and after enzyme treatment. The in vitro and in vivo results showed that this nanoplatform possessed good biocompatibility, satisfactory mitochondria targeting ability, prolonged blood circulation lifetime and enhanced cellular uptake in tumors. This nanoplatform promoted effective near-infrared light-triggered subcellular hyperthermia treatment in vitro and exhibited excellent tumor ablation ability in vivo. These findings suggested that this multifunctional nanoplatform could significantly enhance the therapeutic efficiency of photothermal therapy based on activated mitochondrial targeting.Development of efficiently catalytic strategy for oxidative purification of organic pollutants is of great significance. Photocatalysis has become one of the most important technologies in the past half a century, but the inefficiency of photocatalysts drastically suppresses its practical application. This work proposes a synergistic photopiezocatalysis of BiOIO3 under simultaneous photo-irradiation and ultrasound-vibration treatment to degrade various organic pollutants. Different from the high recombination of photo-excited charges in photocatalysis, the ultrasound-induced stress deforms the pyroelectric BiOIO3 to form a piezoelectric potential that drives photo-/thermo-generated free electrons and holes in catalyst to diffuse along opposite directions. In comparison with the single photocatalysis and piezocatalysis, the photopiezocatalysis possesses a synergistic effect, presenting evidently enhanced catalytic performance for decomposing a variety of organic dyes and a persistent organic pollutant 2,4-DCP. No apparent decrease in activity during successive five runs demonstrates that the photopiezocatalysis of BiOIO3 has a high stability and reusability. Finally, a plausible photopiezocatalysis mechanism is proposed based on the determination of active species produced on catalyst and intermediates during pollutant degradation. Our findings provide a new insight to promote charge separation and meanwhile develop an efficient synergistic photopiezocatalysis for environment remediation.Structural design of semiconductor nanomaterials via facile and green methodology is noteworthy to advance their photocatalytic activity for resolving the problem of energy and environment. Herein, sunlight active zinc oxide coupled with cadmium sulfide (ZnO@CdS) was synthesized by employing the leaf extract of Azadirachta indica. Subsequently, it was used for removal of chlorpyrifos (CP) and atrazine (Atz) pesticides that have shown high persistence, bioaccumulation, and toxicity in the environment. Synthesized ZnO@CdS nanocomposite was characterized by spectroscopic and microscopic techniques. The unique morphology of nanocomposite (particle size ≤ 50 nm) and appearance of stretching vibrations at 600 cm-1 for Zn-S and 679 cm-1 for Cd-O has confirmed the coupling of ZnO with CdS. The degradation conditions were optimized by varying the pesticide amounts, catalyst dose, and pH under the sunlight irradiation. At moderate dosage and neutral pH, the nanocomposite was found highly efficient for the quantitative removal of pesticides (89-91%) due to improved surface area (111 m2g-1), low band energy (1.67 eV), and semiconducting nature resulted from synergism. The degradation followed Langmuir adsorption and first order kinetics. The Effect of ionic strength was helpful to understand the interaction mechanism involved in the removal of contaminants. Being more effective than natives, ZnO@CdS has substantially suppressed the half-life of pesticides as revealed from generation of smaller and less toxic metabolites in GC-MS analysis. The charge separation was supported by photoluminescence and UV-reflectance studies. A scavenger analysis has indicated the presence of active radicals in photocatalysis. The Applicability of green or alternative photocatalyst for multiple times (n = 10) confirmed its sustainability and high efficiency for environmental and industrial purposes.The current spraying of agrochemicals is unselective and ineffective, consuming a high amount of fungicides, which endangers the environment and human health. Cellulose-based nanocarriers (NCs) are a promising tool in sustainable agriculture and suitable vehicles for stimuli-responsive release of agrochemicals to target cellulase-segregating fungi, which cause severe plant diseases such as Apple Canker. Herein, cellulose was modified with undec-10-enoic acid to a hydrophobic and cross-linkable derivative, from which NCs were prepared via thiol-ene addition in miniemulsion. During the crosslinking reaction, the NCs were loaded in situ with hydrophobic fungicides, Captan and Pyraclostrobin. NCs with average sizes ranging from 200 to 300 nm and an agrochemical-load of 20 wt% were obtained. Cellulose-degrading fungi, e.g. Neonectria. ditissima which is responsible for Apple Canker, lead to the release of fungicides from the aqueous NC dispersions suppressing fungal growth. In contrast, the non-cellulase segregating fungi, e.g. Cylindrocladium buxicola, do not degrade the agrochemical-loaded NCs. This selective action against Apple Canker fungi, N. ditissima, proves the efficacy of NC-mediated drug delivery triggered by degradation in the exclusive presence of cellulolytic fungi. Cellulose NCs represent a sustainable alternative to the current unselective spraying of agrochemicals that treats many crop diseases ineffectively.A facile „carbon quantum dots glue” strategy for the fabrication of honeycomb-like carbon quantum dots/nickel sulphide network arrays on Ni foam surface is successfully demonstrated. This design realizes the immobilization of nanosheet arrays and maintains a strong adhesion to the collector, forming a three-dimensional (3D) honeycomb-like architecture. Thanks to the unique structural advantages, the resulting bind-free electrode with high active mass loading of 6.16 mg cm-2 still exhibits a superior specific capacitance of 1130F g-1 at 2 A g-1, and maintains 80% of the initial capacitance even at 10 A g-1 after 3000 cycles. Furthermore, the assembled asymmetrical supercapacitor delivers an energy density of 18.8 Wh kg-1 at a power density of 134 W kg-1, and outstanding cycling stability (100% of initial capacitance retention after 5000 cycles at 5 mA cm-2). These impressive results indicate a new perspective to design various binder-free electrodes for electrochemical energy storage devices.Development of multiple-component catalyst materials is a new trend in electrochemical CO2 reduction reaction (eCO2RR). A new type of metal-oxide interaction is reported here to improve carbon monoxide production via synergistic effect between the CO2-to hydrocarbon selective metal material and CO2-to hydrogen generation oxide material. Cu/Sb2O3 material originates from the hetero-structured CuO/Sb2O3 by a facile two-step hydrolysis and precipitation method, cooperative to inhibit hydrogen evolution or methane product, achieving CO Faradaic efficiency to 92% in CO2 saturated KCl electrolyte at -0.99 V with good stability. The formation of a stable *COOH intermediate by electronic and geometric effects via Cu and Sb2O3 are responsible to promote CO selectivity. Cu-Sb2O3 interface interaction also destabilizes the adsorption *H as well, an intermediate for H2 evolution. This study proposes a versatile design strategy for construction and utilization of metal-oxide interface for eCO2RR.Engineering a targetable nanoparticle to tumor cell is a challenge issue for clinical application. Our results demonstrated that the chemokine CXCL8 secreted by oral squamous cell carcinoma (OSCC) could act as a chemoattractant to attract dental pulp mesenchymal stem cell (DPSC), which expressed the CXCL8 binding receptor, CXCR2, to the OSCC. Therefore, to create OSCC targetable nanoparticles, we used DPSC membranes to modify nanoparticles of metal-organic framework nanoparticles (MOFs) resulting in a novel MOF@DPSCM nanoparticle. Interestingly, results from in vitro and in vivo experiments illustrated that MOF@DPSCM possessed specificity for the OSCC, and the MOF@DPSCM carried DOX (doxorubicin), MOF-DOX@DPSCM could induce CAL27 cell death in vitro and block CAL27 tumor growth in vivo. Our data suggest that this novel MOF-DOX@DPSCM nanoparticle is a potential targetable drug delivery system for the OSCC in the future clinical application.To pursue excellent performance of supercapacitor, an electrode material with designed morphology and tailored intrinsic properties is indeed desired. Herein, nickel-cobalt sulfides hollow spheres decorated with rich sulfur vacancies r-NiCo2S4 HSs) are prepared via an anion exchange of Ni-Co coordination polymer spheres, combined with wet chemical reduction. The r-NiCo2S4 HSs sample delivers excellent performance as an electrode it possesses a high specific capacity (763.5C g-1 at 1 A/g), favorable cyclability (91.40% after 5000 cycles at 10 A/g) and rate capacity (522.68C g-1 at 15 A/g). Additionally, an all-solid-state hybrid supercapacitor device, assembled with r-NiCo2S4 HSs as the positive electrode and N/S co-doped activated carbon nanosheets as the negative electrode, presents an excellent energy density of 50.76 Wh kg-1 under 800 W kg-1 and feasible stability. Thus, combining hollow structure with sulfur vacancies could not only increase more active sites and ensure sufficient redox reactions, but also enhance electronic conductivity, facilitate ions / electrons transport and shorten diffusion path, which could be regarded as a promising approach to develop electrode materials with outstanding performance.We used a simple MOFs-assisted synthesis strategy based on the encapsulation and in-situ carburizing reaction of Cu-based metallic organic frameworks (NENU-5) to synthesize porous nano-octahedral materials, MoWN/MoWC@NCTs (T = 700, 800, and 900). Together with the vapor deposition strategy, the volatile nitrogen species from the pyrolysis of dicyandiamide were captured by the nano-octahedral materials, and formed tungsten-molybdenum-based carbonitride nanocrystals encapsulated in nitrogen-doped carbon. The porous nano-octahedron has a unique heterostructure composed of Mo2N/MoC/W2N/WC. The representative MoWN/MoWC@NC800 showed trifunctional electrocatalytic activity in oxygen reduction reaction/oxygen evolution reaction/hydrogen evolution reaction (ORR/OER/HER) in an alkaline medium (0.1 M KOH). The total oxygen electrode activity index ΔE = 0.795 V (vs. RHE) was found in OER/ORR, and the material also exhibits excellent HER performance. The minimum potential of -0.17 V (vs. RHE) was provided at a current density of -10 mA cm-2. MoWN/MoWC@NC800 showed excellent cycle stability and durability in ORR/OER/HER with the same electrolyte (0.1 M KOH). More importantly, MoWN/MoWC@NC800 could be used to construct high-performance zinc-air batteries and sued for driving electrocatalytic water splitting in a self-powered manner. The successful preparation of the materials indicate that the synthetic strategy provides new reference ideas for developing functional materials with high catalytic properties for various applications.Surface modification of the manganese-based oxide electrode is considered to be a viable strategy to improve electrochemical property in aqueous zinc-ion batteries (ZIBs). However, the modification method through traditional wet-chemical technology can hardly to satisfy high rate capability for aqueous ZIBs due to unhomogeneous and nonconformal coating originates from surface energy mismatch. Herein, a surface modification strategy based on chemical vapor deposition is developed to enhance the electrochemical property of the inactive MnO in aqueous ZIBs. The constructed carbon coating modified MnO electrode shows excellent reversible capacity and superior rate capability with remarkable energy density of 351 Wh kg-1 at 625 W kg-1. The energy storage mechanism of the electrode during the charge and discharge processes is elucidated according to the ex-situ measurements of X-ray diffraction and photoelectron spectroscopy, Fourier transform infrared spectra, and galvanostatic intermittent titration techniques. Moreover, soft-packaged batteries are fabricated with the carbon coating modified MnO, which shows great promises for the practical application of the material. The work paves the way for the exploitation of high performance surface-modified electrode through chemical vapor deposition for aqueous ZIBs.MoS2 is regarded as an attractive anode material for lithium-ion batteries due to its layered structure and high theoretical specific capacity. Its unsatisfied conductivity and the considerable volume change during the charge and discharge process, however, limits its rate performance and cycling stability. Herein, 3D tremella-like nitrogen-doped carbon encapsulated few-layer MoS2 (MoS2@NC) hybrid is obtained via a unique strategy with simultaneously poly-dopamine carbonization, and molybdenum oxide specifies sulfurization. The three-dimensional porous nitrogen-doped carbon served both as a mechanical supporting structure for stabilization of few-layers MoS2 and a good electron conductor. The MoS2@NC exhibits enhanced high rate performance with a specific capacity of 208.7 mAh g-1 at a current density of 10 A g-1 and stable cycling performance with a capacity retention rate of 85.7% after 1000 cycles at 2 A g-1.Bi2O2CO3 (BOC) was successfully loaded on a highly conductive Ti3C2 surface by the hydrothermal method, forming a unique BOC/Ti3C2 heterostructure. The use of advanced characterization methods reveals the composition, morphology and photoelectric properties of the material. The results show that the interface formed by close contact between BOC and Ti3C2 provides an effective channel for charge transfer between the two. Importantly, the photocatalytic degradation efficiency of BOC/Ti3C2 for tetracycline (TC) is ~80%, which is significantly higher than the degradation efficiency of pure BOC and pure Ti3C2 for TC. In addition, BOC/Ti3C2 still has high catalytic activity in the degradation of complex mixed antibiotics. This is because BOC and Ti3C2 have large specific surface areas, high light absorption capacity and efficient carrier separation after recombination. At the same time, the detected superoxide radicals (O2-) and holes (h+) are the main active substances. The degradation pathway and catalytic mechanism of the photocatalytic degradation of TC by BOC/Ti3C2 are further explained. This research designed and developed a BOC/Ti3C2 composite material for the photocatalytic degradation of tetracycline and mixed antibiotic wastewater, providing experimental methods and ideas for actual wastewater treatment.Metal-organic frameworks (MOFs), serving as precursors or templated to construct nanomaterials, which have gained great attentions in the field of electrocatalysis. However, their applications still remain some challenges due to poor conductivity and easy agglomeration. In this work, the MOFs-derived NiCo2S4@NiCo2O4 deposited on reduced Graphene Oxide (rGO) surface is designed by using a facile hydrothermal procedure. Attribute to the enlarged active surface area of the nanostructure and the strong synergistic effect between NiCo2S4 and NiCo2O4, as well as the excellent conductivity of rGO. The NiCo2S4@NiCo2O4-rGO catalyst displays ultrahigh hydrogen evolution reaction (HER) property and excellent stability, only need an overpotential of η10 = 95 mV to attain 10 mA cm-2 and deliver a small Tafel slope of b = 52 mV dec-1 in 1 M KOH. This work can provide a window to construct and develop new noble metal-free HER catalysts base on Ni-MOFs served as precursors.Biomass is a common carbon precursor, because of its low cost, easy access and wide sources. However, direct pyrolysis of biomass usually leads to some disadvantages such as morphology destruction, low surface area and poor porosity. Herein, a silica-confined activation strategy is developed to prepare nitrogen-doped (N-doped) porous carbon microcapsule using the renewable biomass carbon precursor of yeasts. The yeasts are wrapped by a dense silica shell, forming a limited space, which can effectively avoid the destruction of yeast morphology during pyrolysis. The pyrolysis gas derived from yeast cannot overflow due to the limitation of confined space, and it plays an in-situ activator to result in layer structure with thin wall, abundant pores and high specific surface area (870 m2 g-1). Moreover, the N-doped porous carbon microcapsule possesses a higher certain of N-doping than the carbon product derived from direct pyrolysis of yeasts. As electrode materials in supercapacitor, the N-doped porous carbon microcapsule exhibits high capacitance of 316 F g-1 at 1 A g-1 with obvious enhancement of electrochemical performance compared with the carbon product derived from direct pyrolysis of yeasts, indicating the promise as a new electrode material in energy storage.A low crystalline 1T-MoS2@S-doped carbon (MoS2@SC) composite was successfully synthesized via a facile hydrothermal process. The composite is comprised by few-layer 1T-MoS2 nanosheets covered by an amorphous carbon layer with an expanded interlayer d-spacing of 1.01 nm. This structure is conducive to the fast transport of lithium-ions and volume accommodation during the charge-discharge process when the composite is applied as an anode material for LIBs. Additionally, the high conductivity and layered structure of 1T-MoS2 also facilitate fast of ion/electron transport, contributing to the improvement of the electrochemical properties. Therefore, this material demonstrated a high rate performance and excellent cycling stability, with the capacities of 847 and 622 mA h g-1 achieved at the current densities of 0.2 A g-1 and 2 A g-1, respectively. Even at a larger current density of 2 A g-1, MoS2@SC delivered a high reversible capacity of 659 mA h g-1 with an average capacity loss of 0.006% per cycle after 500 cycles.Libraries of DNA-Encoded small molecules created using combinatorial chemistry and synthetic oligonucleotides are being applied to drug discovery projects across the pharmaceutical industry. The majority of reported projects describe the discovery of reversible, i.e. non-covalent, target modulators. We synthesized multiple DNA-encoded chemical libraries terminated in electrophiles and then used them to discover covalent irreversible inhibitors and report the successful discovery of acrylamide- and epoxide-terminated Bruton’s Tyrosine Kinase (BTK) inhibitors. We also demonstrate their selectivity, potency and covalent cysteine engagement using a range of techniques including X-ray crystallography, thermal transition shift assay, reporter displacement assay and intact protein complex mass spectrometry. The epoxide BTK inhibitors described here are the first ever reported to utilize this electrophile for this target.
This paper presents a probable case of Madelung-type deformity of the right lower arm in an individual from the Merovingian burial ground (7th and 8 th century CE) from Gotha-Boilstädt (Germany).
A female individual with an age-at-death of 40-50 years was investigated.
Macroscopic, osteometric and radiographic analyses were performed using standard methods.
The individual exhibits an unusual case of dysmelia of the right upper extremity. The shoulder and upper arm displayed gracile muscle attachment marks and less robustness compared to the left side. The ulna was shortened and distorted and the radius was severely deformed.
The results indicate that the individual might have been affected by a unilateral Madelung-type deformity. The severity of this case is greater than that reported in the clinical literature.
This study places an ancient rare disease into archaeological and paleopathological contexts, allowing for the evaluation of the term „ancient rare disease.” It also highlights the importance of reporting rigorously diagnosed cases in order to raise our level of awareness of the incidence and course of this rare condition in the past.
The diagnosis cannot be stated with certainty, and only a handful of possible diagnoses can be offered. Congenital and acquired etiologies must be considered, especially when compared with clinical cases where severity of conditions may be modified by medical intervention.
Genetic analysis might be helpful in the determination of the etiology of the observed Madelung-type deformity.
Genetic analysis might be helpful in the determination of the etiology of the observed Madelung-type deformity.Fluorescence imaging (FI) in the second near-infrared region (NIR-II, 1000-1700 nm) has attracted great attention for brain tumor imaging due to its deep penetration and high resolution. However, traditional NIR-II organic fluorescent nanoparticles (NPs) are usually hindered by uncontrolled large size (~30-100 nm), marked aggregation-caused quenching (ACQ) effect, and limited blood circulation (~1-3 h), which have great impact on efficient NIR-II FI of deep brain tumors. Herein, starlike polymer brush-based ultrasmall TQFP-10 NPs, with bright NIR-II fluorescence, prolonged blood circulation, and enhanced tumor accumulation, are facilely prepared for efficient orthotopic glioblastoma (GBM) imaging. Compared with traditional method prepared NPs (physically coated TQF@NPs and PEG modified TQF-PEG5K NPs), the ultrasmall (~8 nm) TQFP-10 NPs display a higher NIR-II fluorescence QY (1.9%), which is 2.1- and 3.8-fold higher than TQF@NPs (0.9%) and TQF-PEG5K NPs (0.5%), respectively. In addition, TQFP-10 NPs present a 10.6-fold higher blood circulation half-life (t1/2 = 8.5 h) than that of TQF-PEG5K NPs. Consequently, TQFP-10 NPs exhibit 4.2- and 33-fold higher maximal tumor to normal tissue ratio in subcutaneous and in situ NIR-II FI of GBM, respectively, than TQF@NPs and TQF-PEG5K NPs, attractively realizing GBM imaging. This work provides a general strategy for constructing ultrasmall NIR-II fluorescent NPs with simultaneously improved NIR-II fluorescence and blood circulation for efficient brain tumor imaging.Bone loss associated with fracture nonunion, revision total joint arthroplasty (TJA), and pseudoarthrosis of the spine presents a challenging clinical scenario for the orthopaedic surgeon. Current treatment options including autograft, allograft, bone graft substitutes, and bone transport techniques are associated with significant morbidity, high costs, and prolonged treatment regimens. Unfortunately, these treatment strategies have proven insufficient to safely and consistently heal bone defects in the stringent biological environments often encountered in clinical cases of bone loss. The application of tissue engineering (TE) to musculoskeletal pathology has uncovered exciting potential treatment strategies for challenging bone loss scenarios in orthopaedic surgery. Regional gene therapy involves the local implantation of nucleic acids or genetically modified cells to direct specific protein expression, and has shown promise as a potential TE technique for the regeneration of bone. Preclinical studies in animal models have demonstrated the ability of regional gene therapy to safely and effectively heal critical sized bone defects which otherwise do not heal.


