-
Didriksen Blevins opublikował 5 miesięcy, 2 tygodnie temu
Our findings contribute to understanding of the linear theory of bulk and surface wave dispersions of non-ideal warm magnetic plasmas from the perspective of topological physics. © The Author(s) 2020.Semiconductors that can provide optical gain at extremely low carrier density levels are critically important for applications such as energy efficient nanolasers. However, all current semiconductor lasers are based on traditional semiconductor materials that require extremely high density levels above the so-called Mott transition to realize optical gain. The new emerging 2D materials provide unprecedented opportunities for studying new excitonic physics and exploring new optical gain mechanisms at much lower density levels due to the strong Coulomb interaction and co-existence and mutual conversion of excitonic complexes. Here, we report a new gain mechanism involving charged excitons or trions in electrically gated 2D molybdenum ditelluride well below the Mott density. Our combined experimental and modelling study not only reveals the complex interplay of excitonic complexes well below the Mott transition but also establishes 2D materials as a new class of gain materials at densities 4-5 orders of magnitude lower than those of conventional semiconductors and provides a foundation for lasing at ultralow injection levels for future energy efficient photonic devices. Additionally, our study could help reconcile recent conflicting results on 2D materials While 2D material-based lasers have been demonstrated at extremely low densities with spectral features dominated by various excitonic complexes, optical gain was only observed in experiments at densities several orders of magnitude higher, beyond the Mott density. We believe that our results could lead to more systematic studies on the relationship between the mutual conversion of excitonic species and the existence of optical gain well below the Mott transition. © The Author(s) 2020.Dirac semimetals, the materials featuring fourfold degenerate Dirac points, are critical states of topologically distinct phases. Such gapless topological states have been accomplished by a band-inversion mechanism, in which the Dirac points can be annihilated pairwise by perturbations without changing the symmetry of the system. Here, we report an experimental observation of Dirac points that are enforced completely by the crystal symmetry using a nonsymmorphic three-dimensional phononic crystal. Intriguingly, our Dirac phononic crystal hosts four spiral topological surface states, in which the surface states of opposite helicities intersect gaplessly along certain momentum lines, as confirmed by additional surface measurements. The novel Dirac system may release new opportunities for studying elusive (pseudo) and offer a unique prototype platform for acoustic applications. © The Author(s) 2020.The coupling of HgTe quantum dots to a gold nanobump plasmonic array can enhance the spontaneous infrared emission by a factor of five and reduce the influence of nonradiative decay channels. © The Author(s) 2020.The quality of inverse problem solutions obtained through deep learning is limited by the nature of the priors learned from examples presented during the training phase. Particularly in the case of quantitative phase retrieval, spatial frequencies that are underrepresented in the training database, most often at the high band, tend to be suppressed in the reconstruction. Ad hoc solutions have been proposed, such as pre-amplifying the high spatial frequencies in the examples; however, while that strategy improves the resolution, it also leads to high-frequency artefacts, as well as low-frequency distortions in the reconstructions. Here, we present a new approach that learns separately how to handle the two frequency bands, low and high, and learns how to synthesize these two bands into full-band reconstructions. We show that this „learning to synthesize” (LS) method yields phase reconstructions of high spatial resolution and without artefacts and that it is resilient to high-noise conditions, e.g., in the case of very low photon flux. In addition to the problem of quantitative phase retrieval, the LS method is applicable, in principle, to any inverse problem where the forward operator treats different frequency bands unevenly, i.e., is ill-posed. © The Author(s) 2020.Tip-enhanced Raman spectroscopy (TERS) is currently widely recognized as an essential but still emergent technique for exploring the nanoscale. However, our lack of comprehension of crucial parameters still limits its potential as a user-friendly analytical tool. The tip’s surface plasmon resonance, heating due to near-field temperature rise, and spatial resolution are undoubtedly three challenging experimental parameters to unravel. However, they are also the most fundamentally relevant parameters to explore, because they ultimately influence the state of the investigated molecule and consequently the probed signal. Here we propose a straightforward and purely experimental method to access quantitative information of the plasmon resonance and near-field temperature experienced exclusively by the molecules directly contributing to the TERS signal. The detailed near-field optical response, both at the molecular level and as a function of time, is evaluated using standard TERS experimental equipment by simultaneously probing the Stokes and anti-Stokes spectral intensities. Self-assembled 16-mercaptohexadodecanoic acid monolayers covalently bond to an ultra-flat gold surface were used as a demonstrator. Observation of blinking lines in the spectra also provides crucial information on the lateral resolution and indication of atomic-scale thermally induced morphological changes of the tip during the experiment. This study provides access to unprecedented molecular-level information on physical parameters that crucially affect experiments under TERS conditions. The study thereby improves the usability of TERS in day-to-day operation. The obtained information is of central importance for any experimental plasmonic investigation and for the application of TERS in the field of nanoscale thermometry. © The Author(s) 2020.Optomechanics arises from the photon momentum and its exchange with low-dimensional objects. It is well known that optical radiation exerts pressure on objects, pushing them along the light path. However, optical pulling of an object against the light path is still a counter-intuitive phenomenon. Herein, we present a general concept of optical pulling-opto-thermoelectric pulling (OTEP)-where the optical heating of a light-absorbing particle using a simple plane wave can pull the particle itself against the light path. This irradiation orientation-directed pulling force imparts self-restoring behaviour to the particles, and three-dimensional (3D) trapping of single particles is achieved at an extremely low optical intensity of 10-2 mW μm-2. Moreover, the OTEP force can overcome the short trapping range of conventional optical tweezers and optically drive the particle flow up to a macroscopic distance. The concept of self-induced opto-thermomechanical coupling is paving the way towards freeform optofluidic technology and lab-on-a-chip devices. © The Author(s) 2020.Coupling nano-emitters to plasmonic antennas is a key milestone for the development of nanoscale quantum light sources. One challenge, however, is the precise nanoscale positioning of the emitter in the structure. Here, we present a laser etching protocol that deterministically positions a single colloidal CdSe/CdS core/shell quantum dot emitter inside a subwavelength plasmonic patch antenna with three-dimensional nanoscale control. By exploiting the properties of metal-insulator-metal structures at the nanoscale, the fabricated single-emitter antenna exhibits a very high-Purcell factor (>72) and a brightness enhancement of a factor of 70. Due to the unprecedented quenching of Auger processes and the strong acceleration of the multiexciton emission, more than 4 photons per pulse can be emitted by a single quantum dot, thus increasing the device yield. Our technology can be applied to a wide range of photonic nanostructures and emitters, paving the way for scalable and reliable fabrication of ultra-compact light sources. © The Author(s) 2020.Advanced 1.5-µm emitting materials that can be used to fabricate electrically driven light-emitting devices have the potential for developing cost-effective light sources for integrated silicon photonics. Sensitized erbium (Er3+) in organic materials can give bright 1.5-µm luminescence and provide a route for realizing 1.5-µm organic light emitting diodes (OLEDs). However, the Er3+ electroluminescence (EL) intensity needs to be further improved for device applications. Herein, an efficient 1.5-µm OLED made from a sensitized organic Er3+ co-doped system is realized, where a „traditional” organic phosphorescent molecule with minimal triplet-triplet annihilation is used as a chromophore sensitizer. The chromophore provides efficient sensitization to a co-doped organic Er3+ complex with a perfluorinated-ligand shell. The large volume can protect the Er3+ 1.5-µm luminescence from vibrational quenching. The average lifetime of the sensitized Er3+ 1.5-µm luminescence reaches ~0.86 ms, with a lifetime component of 2.65 ms, which is by far the longest Er3+ lifetime in a hydrogen-abundant organic environment and can even compete with that obtained in the fully fluorinated organic Er3+ system. The optimal sensitization enhances the Er3+ luminescence by a factor of 1600 even with a high concentration of the phosphorescent molecule, and bright 1.5-µm OLEDs are obtained. © The Author(s) 2020.Organic-inorganic hybrid perovskite (OIHP) photodetectors that simultaneously achieve an ultrafast response and high sensitivity in the near-infrared (NIR) region are prerequisites for expanding current monitoring, imaging, and optical communication capbilities. Herein, we demonstrate photodetectors constructed by OIHP and an organic bulk heterojunction (BHJ) consisting of a low-bandgap nonfullerene and polymer, which achieve broadband response spectra up to 1 μm with a highest external quantum efficiency of approximately 54% at 850 nm, an ultrafast response speed of 5.6 ns and a linear dynamic range (LDR) of 191 dB. High sensitivity, ultrafast speed and a large LDR are preeminent prerequisites for the practical application of photodetectors. Encouragingly, due to the high-dynamic-range imaging capacity, high-quality visible-NIR actual imaging is achieved by employing the OIHP photodetectors. We believe that state-of-the-art OIHP photodetectors can accelerate the translation of solution-processed photodetector applications from the laboratory to the imaging market. © The Author(s) 2020.We prepared the three-dimensional model of the SARS-CoV-2 (aka 2019-nCoV) 3C-like protease (3CL pro) using the crystal structure of the highly similar (96% identity) ortholog from the SARS-CoV. All residues involved in the catalysis, substrate binding and dimerisation are 100% conserved. Comparison of the polyprotein PP1AB sequences showed 86% identity. The 3C-like cleavage sites on the coronaviral polyproteins are highly conserved. Based on the near-identical substrate specificities and high sequence identities, we are of the opinion that some of the previous progress of specific inhibitors development for the SARS-CoV enzyme can be conferred on its SARS-CoV-2 counterpart. With the 3CL pro molecular model, we performed virtual screening for purchasable drugs and proposed 16 candidates for consideration. Among these, the antivirals ledipasvir or velpatasvir are particularly attractive as therapeutics to combat the new coronavirus with minimal side effects, commonly fatigue and headache. The drugs Epclusa (velpatasvir/sofosbuvir) and Harvoni (ledipasvir/sofosbuvir) could be very effective owing to their dual inhibitory actions on two viral enzymes.