-
Bundgaard Walton opublikował 5 miesięcy, 2 tygodnie temu
Additionally, the recent applications of EOs including encapsulation, edible coatings, and active packaging are outlined.Excessive use of antimicrobials and inadequate infection control practices has turned antimicrobial resistance (AMR) into a global, public health peril. We studied the expression of qnrA, qnrB, and qnrS plasmid in ciprofloxacin (CIP)-resistant strains of Escherichia coli in swine and humans from Romania, using the Polymerase Chain Reaction (PCR) technique. Antibiotic Susceptibility Testing (AST) for human subjects (H) on 147 samples and 53 swine (S) was ascertained as well as the isolation of bacterial DNA (E. coli) as follows bacteriolysis, DNA-binding, rinsing, elution, amplification, and nucleic acids’ migration and U.V. visualization stages. From 24 samples of E. coli resistant to CIP collected from H subjects and 15 from S, for PCR analysis, 15 H and 12 S were used, with DNA purity of 1.8. The statistically analyzed results using the Crosstabs function (IBM SPSS Statistics-Ver. 2.1.), revealed the qnrS (417 bp) gene in 13 human subjects (52.0%), as well as in all swine samples studied. The qnrB (526 bp) gene was exposed in 9 of the human patients (36.0%) and in all swine isolates, and the qnrA (516 bp) gene was observed only in 3 of the isolates obtained from human subjects (12.0%) and was not discovered in pigs (p > 0.05). The presence of plasmids qnrA, qnrB, and qnrS in the human samples and of qnrB and qnrS in swine, facilitates the survival of pathogens despite the CIP action. The long-term use of CIP could cause a boost in the prevalence of qnr resistance genes, and resistance in the pigs destined for slaughter, a perturbing fact for public health and the human consumer.Resistance to chemotherapy often results from dysfunctional apoptosis, however multiple proteins with overlapping functions regulate this pathway. We sought to determine whether an extensively validated, deterministic apoptosis systems model, 'DR_MOMP’, could be used as a stratification tool for the apoptosis sensitiser and BCL-2 antagonist, ABT-199 in patient-derived xenograft (PDX) models of colorectal cancer (CRC). Through quantitative profiling of BCL-2 family proteins, we identified two PDX models which were predicted by DR_MOMP to be sufficiently sensitive to 5-fluorouracil (5-FU)-based chemotherapy (CRC0344), or less responsive to chemotherapy but sensitised by ABT-199 (CRC0076). Treatment with ABT-199 significantly improved responses of CRC0076 PDXs to 5-FU-based chemotherapy, but showed no sensitisation in CRC0344 PDXs, as predicted from systems modelling. 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) scans were performed to investigate possible early biomarkers of response. In CRC0076, a significant post-treatment decrease in mean standard uptake value was indeed evident only in the combination treatment group. Radiomic CT feature analysis of pre-treatment images in CRC0076 and CRC0344 PDXs identified features which could phenotypically discriminate between models, but were not predictive of treatment responses. Collectively our data indicate that systems modelling may identify metastatic (m)CRC patients benefitting from ABT-199, and that 18F-FDG-PET could independently support such predictions.A 9-year-old male, castrated Chihuahua was examined because of a 7-day history of intermittent vomiting. A mass in the small intestine was identified on abdominal radiography and ultrasonography. Laparotomy revealed a mass lesion originating in the ileum, and surgical resection was performed. The mass was histologically diagnosed as adenosquamous cell carcinoma. Chemotherapy with carboplatin was initiated, but the dog was suspected to have experienced recurrence 13 months after surgery and died 3 months later. To our knowledge, this is the first case report to describe the clinical course of adenosquamous cell carcinoma in the small intestine of a dog.The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.The study was aimed at comparing lower-limb strength and respiratory parameters between male and female athletes and their interaction with performance in a 107 km mountain ultramarathon. Forty seven runners (29 males and 18 females; mean ± SD age 41 ± 5 years) were enrolled. Lower-limb strength assessment comprised a squat jump test, an ankle rebound test, and an isometric strength test. Respiratory assessment included pulmonary function testing and the measurement of maximal inspiratory pressure. Male athletes performed largely better in the squat jump (26 ± 4 vs. 21 ± 3 cm; p less then 0.001; d = 1.48), while no sex differences were found in the other two lower-limb tests. Concerning the respiratory parameters, male athletes showed largely greater values in pulmonary expiratory variables forced vital capacity (5.19 ± 0.68 vs. 3.65 ± 0.52 L; p less then 0.001; d = 2.53), forced expiratory volume in 1 s (4.24 ± 0.54 vs. 2.97 ± 0.39 L; p less then 0.001; d = 2.69), peak expiratory flow (9.9 ± 1.56 vs. 5.89 ± 1.39 L/min; p less then 0.001; d = 2.77) and maximum voluntary ventilation in 12 s (171 ± 39 vs. 108 ± 23 L/min; p less then 0.001; d = 1.93); while no sex differences were identified in maximal inspiratory pressure. Race time was associated with ankle rebound test performance (r = -0.390; p = 0.027), isometric strength test performance (r = -0.349; p = 0.049) and maximal inspiratory pressure (r = -0.544; p less then 0.001). Consequently, it seems that athletes competing in mountain ultramarathons may benefit from improving lower-limb isometric strength, ankle reactive strength and inspiratory muscle strength. Nevertheless, further interventional studies are required to confirm these exploratory results. In addition, the fact that the magnitude of the sex difference for isometric strength was minor, as compared with the other strength tests, could represent one of the factors explaining why the performance gap between males and females is reduced in ultramarathons.The powder bed fusion (PBF) process is a type of Additive Manufacturing (AM) technique which enables fabrication of highly complex geometries with unprecedented design freedom. However, PBF still suffers from manufacturing constraints which, if overlooked, can cause various types of defects in the final part. One such constraint is the local accumulation of heat which leads to surface defects such as melt ball and dross formation. Moreover, slow cooling rates due to local heat accumulation can adversely affect resulting microstructures. In this paper, first a layer-by-layer PBF thermal process model, well established in the literature, is used to predict zones of local heat accumulation in a given part geometry. However, due to the transient nature of the analysis and the continuously growing domain size, the associated computational cost is high which prohibits part-scale applications. Therefore, to reduce the overall computational burden, various simplifications and their associated effects on the accuracy of detecting overheating are analyzed. In this context, three novel physics-based simplifications are introduced motivated by the analytical solution of the one-dimensional heat equation. It is shown that these novel simplifications provide unprecedented computational benefits while still allowing correct prediction of the zones of heat accumulation. The most far-reaching simplification uses the steady-state thermal response of the part for predicting its heat accumulation behavior with a speedup of 600 times as compared to a conventional analysis. The proposed simplified thermal models are capable of fast detection of problematic part features. This allows for quick design evaluations and opens up the possibility of integrating simplified models with design optimization algorithms.The blood-brain barrier (BBB) limits the pharmacotherapy of several brain disorders. In addition to the structural and metabolic characteristics of the BBB, the ATP-driven, drug efflux transporter P-glycoprotein (Pgp) is a selective gatekeeper of the BBB; thus, it is a primary hindrance to drug delivery into the brain. Here, we review the complex regulation of Pgp expression and functional activity at the BBB with an emphasis on recent studies from our laboratory. In addition to traditional processes such as transcriptional regulation and posttranscriptional or posttranslational modification of Pgp expression and functionality, novel mechanisms such as intra- and intercellular Pgp trafficking and intracellular Pgp-mediated lysosomal sequestration in BBB endothelial cells with subsequent disposal by blood neutrophils are discussed. These intrinsic mechanisms of active drug extrusion at the BBB are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the treatment of brain diseases and enhance drug delivery to the brain.Dietary non-adherence is pervasive in the hemodialysis (HD) population. Health literacy is a plausible predictor of dietary adherence in HD patients, but its putative mechanism is scarcely studied. Thus, this study aimed to establish the causal model linking nutrition literacy to dietary adherence in the HD population. This was a multi-centre, cross-sectional study, involving 218 randomly selected multi-ethnic HD patients from nine dialysis centres in Klang Valley, Malaysia. Dietary adherence and self-management skills were assessed using validated End-Stage Renal Disease Adherence Questionnaire and Perceived Kidney/Dialysis Self-Management Scale, respectively. Validated self-developed scales were used to gauge nutrition literacy, dietary knowledge and Health Belief Model constructs. Relationships between variables were examined by multiple linear regressions and partial least squares structural equation modeling. Limited nutrition literacy was evident in 46.3% of the HD patients, associated with older age, lower education level, and shorter dialysis vintage. Dietary adherence rate was at 34.9%. Nutrition literacy (β= 0.390, p less then 0.001) was an independent predictor of dietary adherence, mediated by self-efficacy (SIE = 0.186, BC 95% CI 0.110-0.280) and self-management skills (SIE = 0.192, BC 95% CI 0.103-0.304). Thus, nutrition literacy-enhancing strategies targeting self-efficacy and self-management skills should be considered to enhance dietary adherence in the HD population.