• Haley Randolph opublikował 5 miesięcy, 1 tydzień temu

    The severe acute respiratory syndrome coronavirus (SARS-CoV-2) is a highly transmittable virus which causes the novel coronavirus disease (COVID-19). Monocyte distribution width (MDW) is an in-vitro hematological parameter which describes the changes in monocyte size distribution and can indicate progression from localized infection to systemic infection. In this study we evaluated the correlation between the laboratory parameters and available clinical data in different quartiles of MDW to predict the progression and severity of COVID-19 infection.

    A retrospective analysis of clinical data collected in the Emergency Department of Rashid Hospital Trauma Center-DHA from adult individuals tested for SARS-CoV-2 between January and June 2020. The patients (n = 2454) were assigned into quartiles based on their MDW value on admission. The four groups were analyzed to determine if MDW was an indicator to identify patients who are at increased risk for progression to sepsis.

    Our data showed a significant positive correlation between MDW and various laboratory parameters associated with SARS-CoV-2 infection. The study also revealed that MDW ≥ 24.685 has a strong correlation with poor prognosis of COVID-19.

    Monitoring of monocytes provides a window into the systemic inflammation caused by infection and can aid in evaluating the progression and severity of COVID-19 infection.

    Monitoring of monocytes provides a window into the systemic inflammation caused by infection and can aid in evaluating the progression and severity of COVID-19 infection.

    Cremastra appendiculata is a rare terrestrial orchid with a high market value as an ornamental and medicinal plant. However, the species depends entirely on fungi for seed germination under natural conditions. In a previous study, we have successfully isolated and identified the mycorrhizal fungus Coprinellus disseminatus which was able to induce the germination of C. appendiculata seeds. We then speculated that C. disseminatus may do so by breaking the testa imposed dormancy of the seeds. In this study, biochemical and transcriptomic analyses were used to characterize the germination of C. appendiculata seeds, collected at different stages of germination, as affected by C. disseminatus.

    The lignocellulose in the seeds coat of C. appendiculata was degraded by the mycorrhizal fungus resulting in facilitated absorption of water. The rate of decline in lignin content was 67 and 73% at 6 and 12 days after sowing, respectively. The water content increased from 13 to 90% during symbiosis. A total of 15,382 genebsorption of the embryo.

    ICU operational conditions may contribute to cognitive overload and negatively impact on clinical decision making. We aimed to develop a quantitative model to investigate the association between the operational conditions and the quantity of medication orders as a measurable indicator of the multidisciplinary care team’s cognitive capacity.

    The temporal data of patients at one medical ICU (MICU) of Mayo Clinic in Rochester, MN between February 2016 to March 2018 was used. This dataset includes a total of 4822 unique patients admitted to the MICU and a total of 6240 MICU admissions. Guided by the Systems Engineering Initiative for Patient Safety model, quantifiable measures attainable from electronic medical records were identified and a conceptual framework of distributed cognition in ICU was developed. Univariate piecewise Poisson regression models were built to investigate the relationship between system-level workload indicators, including patient census and patient characteristics (severity of illness result in changes in the production of medication orders. The results of this analysis heighten the importance of increasing situational awareness of the care team to detect and react to changing circumstances in the ICU that may contribute to cognitive overload.

    Our model suggests that ICU operational factors, such as admission rates and patient severity of illness may impact the critical care team’s cognitive function and result in changes in the production of medication orders. The results of this analysis heighten the importance of increasing situational awareness of the care team to detect and react to changing circumstances in the ICU that may contribute to cognitive overload.

    Sexual maturation causes loss of fish muscle mass and deterioration of fillet quality attributes that prevent market success. We recently showed that fillet yield and flesh quality recover in female trout after spawning. To gain insight into the molecular mechanisms regulating flesh quality recovery, we used an Agilent-based microarray platform to conduct a large-scale time course analysis of gene expression in female trout white muscle from spawning to 33 weeks post-spawning.

    In sharp contrast to the situation at spawning, muscle transcriptome of female trout at 33 weeks after spawning was highly similar to that of female trout of the same cohort that did not spawn, which is consistent with the post-spawning flesh quality recovery. Large-scale time course analysis of gene expression in trout muscle during flesh quality recovery following spawning led to the identification of approximately 3340 unique differentially expressed genes that segregated into four major clusters with distinct temporal expressionh transcriptional changes promoting anaerobic ATP production, muscle fibre hypertrophic growth and extracellular matrix remodelling. The generation of the first database of genes associated with post-spawning muscle recovery may provide insights into the molecular and cellular mechanisms controlling muscle yield and fillet quality in fish and provide a useful list of potential genetic markers for these traits.

    Overall, our study indicates that white muscle tissue restoration and flesh quality recovery after spawning are associated with transcriptional changes promoting anaerobic ATP production, muscle fibre hypertrophic growth and extracellular matrix remodelling. The generation of the first database of genes associated with post-spawning muscle recovery may provide insights into the molecular and cellular mechanisms controlling muscle yield and fillet quality in fish and provide a useful list of potential genetic markers for these traits.

    Life expectancy in people with inflammatory bowel disease (IBD) has increased but remains shorter than in people without IBD. We describe the life expectancy associated with IBD therapies among the growing number of older adults living with IBD.

    Older adults (≥ 65years) with IBD were identified from population-based health administrative data using a validated algorithm. Life expectancy on patients’ 65th birthday, stratified by sex, was calculated using a period life table approach from age- and sex-specific mortality rates among patients receiving immunomodulator monotherapy, biologic monotherapy, combination therapy, mesalamine, systemic steroids, and no therapy.

    Among 28,260 older adults with IBD (239,125 person-years of follow-up), life expectancy at 65years was longest for patients taking mesalamine (females 22.1years, 95% CI 21.8-22.5; males 19.6years, 95% CI 19.3-20.0) and shortest for patients taking steroids (females 11.7years, 95% CI 11.0-12.4; males 10.3years, 95% CI 9.7-10.8). Life expectancy was similar for patients receiving immunomodulator monotherapy and biologic monotherapy. Immunomodulator monotherapy was associated with a reduction in life expectancy compared to combination therapy by 5.1 (95% CI 2.3-7.8) in females and 2.8years (95% CI 0.1-5.5) in males.

    Life expectancy varies across therapies used for IBD, with differences likely arising from a combination of medication effectiveness, safety profiles, disease severity, and comorbid conditions. These considerations should be balanced when deciding on a therapeutic approach for the management of IBD in older adults.

    Life expectancy varies across therapies used for IBD, with differences likely arising from a combination of medication effectiveness, safety profiles, disease severity, and comorbid conditions. These considerations should be balanced when deciding on a therapeutic approach for the management of IBD in older adults.

    Methamphetamine (MA) is a non-selective monoamine releaser and thus releases serotonin (5-HT), norepinephrine (NE) and dopamine (DA) from corresponding nerve terminals into synapses. DOI ((±)-2, 5-dimethoxy-4-iodoamphetamine) is a direct-acting serotonergic 5-HT

    receptor agonist and induces the head-twitch response (HTR) via stimulation of 5-HT

    receptor in mice. While more selective serotonin releasers such as d-fenfluramine evoke the HTR, monoamine reuptake blockers (e.g., cocaine) suppress the DOI-evoked HTR via indirect stimulation of serotonergic 5-HT

    – and adrenergic ɑ

    -receptors. Since the induction of HTR by DOI is age-dependent, we investigated whether (1) during development MA can evoke the HTR by itself, and (2) acute pretreatment with either the selective 5-HT

    receptor antagonist EMD 281014 or low-doses of MA can (i) modulate the DOI-induced HTR in mice across postnatal days 20, 30 and 60, and (ii) alter the DOI-induced c-fos expression in mice prefrontal cortex (PFC). To further explore ffect of MA on the DOI-evoked HTR appears to be mainly due to functional interactions between the HTR-inducing 5-HT

    receptor and the inhibitory 5-HT

    receptor. The MA-induced increase in c-fos expression in different PFC regions may be due to MA-evoked increases in synaptic concentrations of 5-HT, NE and/or DA.

    The suppressive effect of MA on the DOI-evoked HTR appears to be mainly due to functional interactions between the HTR-inducing 5-HT2A receptor and the inhibitory 5-HT1A receptor. The MA-induced increase in c-fos expression in different PFC regions may be due to MA-evoked increases in synaptic concentrations of 5-HT, NE and/or DA.

    Neonicotinoids are widely applied in the control of the destructive agricultural pest Bemisia tabaci, and resistance against these chemicals has become a common, severe problem in the control of whiteflies. To investigate the molecular mechanism underlying resistance against nenonicotinoids in whiteflies, RNA-seq technology was applied, and the variation in the transcriptomic profiles of susceptible whiteflies and whiteflies selected by imidacloprid, acetamiprid and thiamethoxam treatment was characterized.

    A total of 90.86 GB of clean sequence data were obtained from the 4 transcriptomes. Among the 16,069 assembled genes, 584, 110 and 147 genes were upregulated in the imidacloprid-selected strain (IMI), acetamiprid-selected strain (ACE), and thiamethoxam (THI)-selected strain, respectively, relative to the susceptible strain. Detoxification-related genes including P450s, cuticle protein genes, GSTs, UGTs and molecular chaperone HSP70s were overexpressed in the selected resistant strains, especially in the IMI strain. Five genes were downregulated in all three selected resistant strains, including 2 UDP-glucuronosyltransferase 2B18-like genes (LOC 109030370 and LOC 109032577).

    Ten generations of selection with the three neonicotinoids induced different resistance levels and gene expression profiles, mainly involving cuticle protein and P450 genes, in the three selected resistant whitefly strains. The results provide a reference for research on resistance and cross-resistance against neonicotinoids in B. tabaci.

    Ten generations of selection with the three neonicotinoids induced different resistance levels and gene expression profiles, mainly involving cuticle protein and P450 genes, in the three selected resistant whitefly strains. The results provide a reference for research on resistance and cross-resistance against neonicotinoids in B. tabaci.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0