-
Ritchie Hickman opublikował 1 rok, 3 miesiące temu
The spleen plays a key role in iron homeostasis. It is the largest filter of the blood and performs iron reuptake from old or damaged erythrocytes. Despite this role, spleen iron concentration has not been measured in a large, population-based cohort. In this study, we quantify spleen iron in 41,764 participants of the UK Biobank by using magnetic resonance imaging and provide a reference range for spleen iron in an unselected population. Through genome-wide association study, we identify associations between spleen iron and regulatory variation at two hereditary spherocytosis genes, ANK1 and SPTA1. Spherocytosis-causing coding mutations in these genes are associated with lower reticulocyte volume and increased reticulocyte percentage, while these common alleles are associated with increased expression of ANK1 and SPTA1 in blood and with larger reticulocyte volume and reduced reticulocyte percentage. As genetic modifiers, these common alleles may explain mild spherocytosis phenotypes that have been observed clinically. Our genetic study also identifies a signal that co-localizes with a splicing quantitative trait locus for MS4A7, and we show this gene is abundantly expressed in the spleen and in macrophages. The combination of deep learning and efficient image processing enables non-invasive measurement of spleen iron and, in turn, characterization of genetic factors related to the lytic phase of the erythrocyte life cycle and iron reuptake in the spleen.Generation of tissue curvature is essential to morphogenesis. However, how cells adapt to changing curvature is still unknown because tools to dynamically control curvature in vitro are lacking. Here, we developed self-rolling substrates to study how flat epithelial cell monolayers adapt to a rapid anisotropic change of curvature. We show that the primary response is an active and transient osmotic swelling of cells. This cell volume increase is not observed on inducible wrinkled substrates, where concave and convex regions alternate each other over short distances; and this finding identifies swelling as a collective response to changes of curvature with a persistent sign over large distances. It is triggered by a drop in membrane tension and actin depolymerization, which is perceived by cells as a hypertonic shock. Osmotic swelling restores tension while actin reorganizes, probably to comply with curvature. Thus, epithelia are unique materials that transiently and actively swell while adapting to large curvature induction.Effective solutions to the ongoing „coral reef crisis” will remain limited until the underlying drivers of coral reef degradation are better understood. Here, we conduct a global-scale study of how four key metrics of ecosystem states and processes on coral reefs (top predator presence, reef fish biomass, trait diversity, and parrotfish scraping potential) are explained by 11 indicators based on key human-environment theories from the social sciences. Our global analysis of >1,500 reefs reveals three key findings. First, the proximity of the nearest market has the strongest and most consistent relationships with these ecosystem metrics. This finding is in keeping with a body of terrestrial research on how market accessibility shapes agricultural practices, but the integration of these concepts in marine systems is nascent. Second, our global study shows that resource conditions tend to display a n-shaped relationship with socioeconomic development. Specifically, the probabilities of encountering a top predator, fish biomass, and fish trait diversity were highest where human development was moderate but lower where development was either high or low. This finding contrasts with previous regional-scale research demonstrating an environmental Kuznets curve hypothesis (which predicts a U-shaped relationship between socioeconomic development and resource conditions). Third, together, our ecosystem metrics are best explained by the integration of different human-environment theories. Our best model includes the interactions between indicators from different theoretical perspectives, revealing how marine reserves can have different outcomes depending on how far they are from markets and human settlements, as well as the size of the surrounding human population.Antibiotics are a modifiable iatrogenic risk factor for the most common human nosocomial fungal infection, invasive candidiasis, yet the underlying mechanisms remain elusive. We found that antibiotics enhanced the susceptibility to murine invasive candidiasis due to impaired lymphocyte-dependent IL-17A- and GM-CSF-mediated antifungal immunity within the gut. This led to non-inflammatory bacterial escape and systemic bacterial co-infection, which could be ameliorated by IL-17A or GM-CSF immunotherapy. Vancomycin alone similarly enhanced the susceptibility to invasive fungal infection and systemic bacterial co-infection. Mechanistically, vancomycin reduced the frequency of gut Th17 cells associated with impaired proliferation and RORγt expression. Vancomycin’s effects on Th17 cells were indirect, manifesting only in vivo in the presence of dysbiosis. In humans, antibiotics were associated with an increased risk of invasive candidiasis and death after invasive candidiasis. Our work highlights the importance of antibiotic stewardship in protecting vulnerable patients from life-threatening infections and provides mechanistic insights into a controllable iatrogenic risk factor for invasive candidiasis.Changes in the microbiota composition are associated with many human diseases, but factors that govern strain abundance remain poorly defined. We show that a commensal Escherichia coli strain and a pathogenic Salmonella enterica serovar Typhimurium isolate both utilize nitrate for intestinal growth, but each accesses this resource in a distinct biogeographical niche. Commensal E. coli utilizes epithelial-derived nitrate, whereas nitrate in the niche occupied by S. Typhimurium is derived from phagocytic infiltrates. Surprisingly, avirulent S. Typhimurium was shown to be unable to utilize epithelial-derived nitrate because its chemotaxis receptors McpB and McpC exclude the pathogen from the niche occupied by E. coli. In contrast, E. coli invades the niche constructed by S. Typhimurium virulence factors and confers colonization resistance by competing for nitrate. Thus, nutrient niches are not defined solely by critical resources, but they can be further subdivided biogeographically within the host into distinct microhabitats, thereby generating new niche opportunities for distinct bacterial species.Defects in DNA double-strand break repair are thought to render BRCA1 or BRCA2 (BRCA) mutant tumors selectively sensitive to PARP inhibitors (PARPis). Challenging this framework, BRCA and PARP1 share functions in DNA synthesis on the lagging strand. Thus, BRCA deficiency or „BRCAness” could reflect an inherent lagging strand problem that is vulnerable to drugs such as PARPi that also target the lagging strand, a combination that generates a toxic accumulation of replication gaps.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants.The murine serous cavities contain a rare and enigmatic population of short-lived F4/80lo MHCII+ macrophages but what regulates their development, survival, and fate is unclear. Here, we show that mature F4/80lo MHCII+ peritoneal macrophages arise after birth, but that this occurs largely independently of colonization by microbiota. Rather, microbiota specifically regulate development of a subpopulation of CD11c+ cells that express the immunoregulatory cytokine RELM-α, are reliant on the transcription factor EGR2, and develop independently of the growth factor CSF1. Furthermore, we demonstrate that intrinsic expression of RELM-α, a signature marker shared by CD11c+ and CD11c- F4/80lo MHCII+ cavity macrophages, regulates survival and differentiation of these cells in the peritoneal cavity in a sex-specific manner. Thus, we identify a previously unappreciated diversity in serous cavity F4/80lo MHCII+ macrophages that is regulated by microbiota, and describe a novel sex and site-specific function for RELM-α in regulating macrophage endurance that reveals the unique survival challenge presented to monocyte-derived macrophages by the female peritoneal environment.
To evaluate the prevalence of preeclampsia among cases of COVID-19 infection during pregnancy and the association between both conditions, in a multicenter cohort of Brazilian women with respiratory symptoms.
Ancillary analysis of the Brazilian Network of COVID-19 in Obstetrics (REBRACO) study. We performed a nested case-control analysis selecting all women with COVID-19 and compared outcomes between women with and without PE.
Maternal, gestational, and clinical characteristics and perinatal outcomes.
Prevalence ratio (PR) and its 95%CI for each of the predictors and outcomes.
A total of 203 women were included 21 (10.3%) in PE group and 182 (89.7%) in non-PE group. Preeclampsia was not different among women with and without COVID-19 (10.3% vs 13.1%, p-value=0.41), neither complication such as eclampsia and HELLP syndrome. Chronic hypertension (33.4%) (p<0.01) and obesity (60.0%) (p=0.03) were the most frequent comorbidities in PE group, and they were significantly more frequent in this group. Women with PE had more cesarean section (RR 5.54 [1.33 – 23.14]) and their neonates were more frequently admitted to neonatal intensive care unit (PR 2.46[1.06 – 5.69]), most likely due to preterm-birth-related complications.
The prevalence of PE among women with COVID-19 infection during pregnancy was around 10%; women with COVID-19 and a history of chronic hypertension or obesity are more likely to have preeclampsia. Cesarean section is increased among women with PE and COVID-19, with increased rates of neonatal admission to intensive care units, mostly due to prematurity.
The prevalence of PE among women with COVID-19 infection during pregnancy was around 10%; women with COVID-19 and a history of chronic hypertension or obesity are more likely to have preeclampsia. Cesarean section is increased among women with PE and COVID-19, with increased rates of neonatal admission to intensive care units, mostly due to prematurity.


