-
Ross Bray opublikował 1 rok, 3 miesiące temu
Of note, epithelial cell polarity acts as a gatekeeper against EMT. Thus, it remains important to elucidate the mechanisms by which HCV alters polarity and promotes EMT that could participate in viral-induced hepatic carcinogenesis. In this review, we define the main steps involved in the polarization process of epithelial cells and recall the essential cellular actors involved. We also highlight the particularities of hepatocyte polarity, responsible for their unique morphology. We then focus on the alterations by HCV of epithelial cell polarity and the consequences of the transformation of hepatocytes involved in the carcinogenesis process.Gestational Toxoplasma gondii (T. gondii) infection may cause substantial adverse effects on developing fetuses, newborns and also mothers. This study aims to estimate the seroprevalence of T. gondii among rural Bangladeshi pregnant women and determine the risk of a low birth weight (LBW). We followed a longitudinal design where 208 pregnant women were followed until the birth of their infants. Levels of IgG and IgM of T. gondii were assessed using chemiluminescent immunoassay. Modified Poisson regression was used to estimate crude and adjusted associations and multiple regression analysis was performed to understand the confounding and modifying effects of the variables. Thirty-nine (19%) children were born with LBW, among whom 15 (39%) mothers were positive for T. gondii IgG during pregnancy. After adjusting for several confounders and modifiers, pregnant women with T. gondii IgG or IgM seropositivity were significantly associated with LBW of infants (aRR 2.00, 95% CI 1.17-3.42). The strength of this association increased after adjusting for maternal education (aRR 4.88, 95% CI 1.74-13.69). The final model had an AROC of 0.84 with a sensitivity of 36% and specificity of 97%. Although causality is yet to be established, the study observed an association between T. gondii infection during pregnancy among rural Bangladeshi women and LBW of newborns.Candida colonisation of the oral cavity increases in immunocompromised individuals which leads to the development of oral candidiasis. In addition, host factors such as xerostomia, smoking, oral prostheses, dental caries, diabetes and cancer treatment accelerate the disease process. Candida albicans is the primary causative agent of this infection, owing to its ability to form biofilm and hyphae and to produce hydrolytic enzymes and candialysin. Although mucosal immunity is activated, from the time hyphae-associated toxin is formed by the colonising C. albicans cells, an increased number and virulence of this pathogenic organism collectively leads to infection. Prevention of the development of infection can be achieved by addressing the host physiological factors and habits. For maintenance of oral health, conventional oral hygiene products containing antimicrobial compounds, essential oils and phytochemicals can be considered, these products can maintain the low number of Candida in the oral cavity and reduce their virulence. Vulnerable patients should be educated in order to increase compliance.
is a tick-borne protozoan parasite responsible for bovine theileriosis, a disease that impacts cattle population in many developing countries. Development and deployment of effective control strategies, based on vaccine or therapy, should consider the extent of diversity of the parasite and its population structure in different endemic areas. In this study, we examined
in Pakistan and carried out a comparative analysis with similar data garneted in other areas, to provide further information on the level of parasite diversity and parasite genetic structure in different endemic areas.
The present study examined a set of 10 microsatellites/minisatellites and analyzed the genetic structure of
in cattle breeds from Pakistan (Indian sub-continent) and compared these with those in Oman (Middle East), Tunisia (Africa), and Turkey (Europe).
A high level of genetic diversity was observed among
detected in cattle from Pakistan, comparable to that in Oman, Tunisia, and Turkey. The genotypes of
in thesa (Tunisia), which shared some genotypes with that in the Near East and Europe (Turkey). This suggests some level of parasite gene flow, indicative of limited movement between neighboring countries.Benzimidazoles are the only approved drugs for the treatment of inoperable human alveolar echinococcosis but may be limited due to intolerance or, rarely, ineffectiveness. A medical second-line or salvage therapy is not available, though it is urgently needed. We report long-term follow-up data from 14 patients who underwent salvage therapy with repurposed drugs with cumulatively 53.25 patient-years. Treatment response was evaluated by both clinical outcome and image studies, preferably PET/CT. Eleven patients received amphotericin B, and 70% of evaluable cases showed some positive treatment response, but side effects often limited therapy. Five patients received nitazoxanide, of which two showed clear progression but one achieved a lasting stable disease. One patient was treated with mefloquine combination therapy in advanced disease, and overall, a positive treatment response could not be assessed. Furthermore, we report on one patient receiving pembrolizumab for a concomitant malignancy, which did not result in a reduction of echinococcal manifestation. In summary, current options of salvage therapy can sometimes induce persistent disease control, although with potentially significant side effects and high treatment costs, and mortality remains high. No clear recommendation for a salvage therapy can be given; treatment remains highly experimental, and non-pharmaceutical interventions have to be considered.Avian schistosomes are blood flukes parasitizing aquatic birds and snails, which are responsible for a zoonotic disease known as cercarial dermatitis, a hypersensitive reaction associated to the cutaneous penetration of furcocercariae. Despite its worldwide distribution, its knowledge is fragmentary in the Neotropics, with most of data coming from Argentina and Brazil. In Chile, there are only two mentions of these parasites from birds, and one human outbreak was associated to the genus „Trichobilharzia”. However, the identity of such parasites is pending. The aim of this study was to identify the furcocercariae of avian schistosomes from Southern Chile using an integrative approach. Thus, a total of 2283 freshwater snails from different families were collected from three different regions. All snails were stimulated for the shedding of furcocercariae, but only Chilina dombeyana (Chilinidae) from the Biobío region was found to be parasitized. The morphology and phylogenetic analyses of 28S and COI genes staterecord in Argentina, with Chilina dombeyana as an additional intermediate host.Animal African trypanosomosis (AAT) leads to emaciation and low productivity in infected animals. Only six drugs are commercially available against AAT; they have severe side effects and face parasite resistance. Thus, the development of novel trypanocidal drugs is urgently needed. Nitrofurantoin, an antimicrobial, is used for treating bacterial urinary tract infections. Recently, we reported the trypanocidal effects of nitrofurantoin and its analogs in vitro. Furthermore, a nitrofurantoin analog, nifurtimox, is currently used to treat Chagas disease and chronic human African trypanosomiasis. Thus, this study was aimed at evaluating the in vivo efficacy of nitrofurantoin in treating AAT caused by Trypanosoma congolense. Nitrofurantoin was orally administered for 7 consecutive days from 4 days post-infection in T. congolense-infected mice, and the animals were observed for 28 days. Compared to the control group, the treatment group showed significantly suppressed parasitemia at 6 days post-infection. Furthermore, survival was significantly prolonged in the group treated with at least 10 mg/kg nitrofurantoin. Moreover, 100% survival and cure was achieved with a dose of nitrofurantoin higher than 30 mg/kg. Thus, oral nitrofurantoin administration has potential trypanocidal efficacy against T. congolense-induced AAT. This preliminary data will serve as a benchmark when comparing future nitrofurantoin-related compounds, which can overcome the significant shortcomings of nitrofurantoin that preclude its viable use in livestock.Viral nervous necrosis (VNN) is the most important viral disease affecting farmed fish in the Mediterranean. VNN can affect multiple fish species in all production phases (broodstock, hatchery, nursery and ongrowing) and sizes, but it is especially severe in larvae and juvenile stages, where can it cause up to 100% mortalities. European sea bass has been and is still the most affected species, and VNN in gilthead sea bream has become an emerging problem in recent years affecting larvae and juveniles and associated to the presence of new nervous necrosis virus (NNV) reassortants. The relevance of this disease as one of the main biological hazards for Mediterranean finfish farming has been particularly addressed in two recent H2020 projects PerformFISH and MedAID. The presence of the virus in the environment and in the farming systems poses a serious menace for the development of the Mediterranean finfish aquaculture. Several risks associated to the VNN development in farms have been identified in the differents and boosting the fish immune system though nutrition.In the last decade, declines in the population of wild blue mussels Mytilus edulis in the Tamar estuary (United Kingdom) have been noted. In archived samples collected from 2013 to 2019, between 7% (in 2013) and 18% (in 2019) showed large granulocytoma and haemocytic infiltration in the interstitial tissue of the digestive gland. Four samples were selected for 16S rRNA gene Nanopore sequencing. A consensus sequence of 1449 bp showed nucleotide similarities between 99.93-100% with published sequences of Francisella halioticida. In situ hybridisation (ISH) confirmed the presence of F. halioticida DNA within individual granulocytes of granulocytomas and also in prokaryotic-like inclusion bodies within the digestive epithelial cells. The design of diagnostic tests for surveillance of F. halioticida, including more specific ISH probes and sequencing the genome of the isolates infecting mussels, will shed more light on the pathogenicity and spread of this pathogen.Porphyromonas gingivalis (P. gingivalis) is a unique pathogen implicated in severe forms of periodontitis (PD), a disease that affects around 50% of the US population. P. gingivalis is equipped with a plethora of virulence factors that it uses to exploit its environment and survive. These include distinct fimbrial adhesins that enable it to bind to other microbes, colonize inflamed tissues, acquire nutrients, and invade cells of the stroma and immune system. Most notable for this review is its ability to invade dendritic cells (DCs), which bridge the innate and adaptive immune systems. This invasion process is tightly linked to the bridging functions of resultant DCs, in that it can disable (or stimulate) the maturation function of DCs and cytokines that are secreted. Maturation molecules (e.g., MHCII, CD80/CD86, CD40) and inflammatory cytokines (e.g., IL-1b, TNFa, IL-6) are essential signals for antigen presentation and for proliferation of effector T-cells such as Th17 cells. In this regard, the ability of P. gingivalis to coordinately regulate its expression of major (fimA) and minor (mfa-1) fimbriae under different environmental influences becomes highly relevant. This review will, therefore, focus on the immunoregulatory role of P. gingivalis fimbriae in the invasion of DCs, intracellular signaling, and functional outcomes such as alveolar bone loss and immune senescence.In childhood tuberculosis (TB), with an estimated 69% of missed cases in children under 5 years of age, the case detection gap is larger than in other age groups, mainly due to its paucibacillary nature and children’s difficulties in delivering sputum specimens. Accurate and accessible point-of-care tests (POCTs) are needed to detect TB disease in children and, in turn, reduce TB-related morbidity and mortality in this vulnerable population. In recent years, several POCTs for TB have been developed. These include new tools to improve the detection of TB in respiratory and gastric samples, such as molecular detection of Mycobacterium tuberculosis using loop-mediated isothermal amplification (LAMP) and portable polymerase chain reaction (PCR)-based GeneXpert. In addition, the urine-based detection of lipoarabinomannan (LAM), as well as imaging modalities through point-of-care ultrasonography (POCUS), are currently the POCTs in use. Further to this, artificial intelligence-based interpretation of ultrasound imaging and radiography is now integrated into computer-aided detection products. In the future, portable radiography may become more widely available, and robotics-supported ultrasound imaging is currently being trialed. Finally, novel blood-based tests evaluating the immune response using „omic-„techniques are underway. This approach, including transcriptomics, metabolomic, proteomics, lipidomics and genomics, is still distant from being translated into POCT formats, but the digital development may rapidly enhance innovation in this field. Despite these significant advances, TB-POCT development and implementation remains challenged by the lack of standard ways to access non-sputum-based samples, the need to differentiate TB infection from disease and to gain acceptance for novel testing strategies specific to the conditions and settings of use.The first case of human infection by a species of the Anisakidae family was reported more than 60 years ago. Over the last 20 years, Anisakis has become a highly studied parasite, not only for its parasitism, but also for its role as an inducer of allergic reactions. Several studies have indicated that the pathological changes occurring within the gastrointestinal tract during infection with Anisakis simplex are the combined result of the direct action of the larvae invading the tissue and the complex interaction between the host’s immune system and the parasite. Although the most commonly described pathologies are digestive, urticaria/angioedema and anaphylaxis, occupational asthma and arthritis have been seldom described. This paper is a narrative of the immune-mediated reaction induced by this parasite over the course of the last two decades.African swine fever is a viral disease of the family Suidae. Methods to detect and quantify African swine fever virus (ASFV) include qPCR and virus infectivity assays. Individual laboratories often use in-house procedures for these assays, which can hamper the comparison of results. The objective of this study was to estimate the probability of ASFV detection using these assays, and to determine the inter-test correlations between results. This was achieved by testing a panel of 80 samples at three reference laboratories. Samples were analysed using nucleic acid extraction and qPCR, as well as virus infectivity assays. For qPCR, a very high probability (ranging from 0.96 to 1.0) of detecting ASFV DNA was observed for all tested systems. For virus infectivity assays in cells, the probability of detecting infectious ASFV varied from 0.68 to 0.90 and was highest using pulmonary alveolar macrophages, followed by MARC145 cells, peripheral blood monocytes, and finally wild boar lung cells. Intraclass correlation coefficient estimates of 0.97 (0.96-0.98) between qPCR methods, 0.80 (0.74-0.85) to 0.94 (0.92-0.96) between virus infectivity assays, and 0.77 (0.68-0.83) to 0.95 (0.93-0.96) between qPCR methods and virus infectivity assays were obtained. These findings show that qPCR gives the highest probability for the detection of ASFV.Bacterial infections are a significant cause of illness and death in different animals. However, these bacterial infections could be a source of human disease or illness if these pathogenic bacteria are present in companion animals. This study aimed to investigate the prevalence of pathogenic bacteria associated with different site infections in cats in the Republic of Korea. For this purpose, samples were collected from the skin/ear, urine, respiratory, and diarrheal stool origins of cats obtained between 2018 and 2019 from seven different laboratories and centers participating in the Korean Veterinary Antimicrobial Resistance Monitoring System. These samples were subjected to analysis for the identification and isolation of associated bacterial species using a bacterial culture approach. A total of 609 isolates were identified in four different cat samples. Among them, 267, 184, 57, and 101 were extracted from diarrheal stool, skin, urine, and respiratory samples, respectively. The findings of this study showed that Escherichia coli was the most prevalent species among isolated bacterial species of diarrheal stool and urine origin. Staphylococcus felis and Pasteurella multocida were most prevalent in the skin and respiratory tract, respectively. However, there was no significant difference in bacterial distribution among the different age groups in all samples. This is the first nationwide surveillance report that associates bacterial prevalence with their site of origin and helps in the prevention of bacterial infections in cats. Moreover, the pattern of bacterial prevalence could provide sufficient guidance for the selection of empirical antimicrobial therapy against infections in cats.Aeromonas hydrophila is a pathogenic bacterium that can cause serious infections both in humans and aquatic animals. Antibiotics are the main approach for fighting against the pathogen. However, the emergence of antibiotic resistance has resulted in treatment failure. Therefore, drugs with novel strategies need to be developed. Quorum sensing has been recognized as a promising method for identifying anti-virulence drugs against bacterial infections. The aim of this study was to identify novel drugs targeting quorum sensing of A. hydrophila as alternatives of antibiotics in aquaculture. Thus, hemolytic activity, biofilm formation, qPCR and experimental therapeutics assays were conducted. The results showed that sanguinarine inhibited the growth of A. hydrophila at concentrations higher than 16 μg/mL, but the production of aerolysin and biofilm formation was significantly inhibited at sub-inhibitory concentrations by disrupting the quorum sensing system. Cell viability results showed that sanguinarine could provide protection for A549 cells from aerolysin-induced cell injury. In addition, the mortality of channel catfish administered with sanguinarine at a dosage of 20 mg/kg decreased to 40%, which showed a significant decrease compared with fish in positive group. Taken together, these findings demonstrated that anti-virulence strategies can be a powerful weapon for fighting against bacterial pathogens and sanguinarine appears to be a promising candidate in the treatment of A. hydrophila infections.Hymenolepis diminuta is primarily a rodent parasite that is ubiquitously distributed worldwide, but with only a few cases described as human infections. We report a case of Hymenolepis diminuta infection in a 15-month-old child, living in an urban setting, with no previous medical history. The patient presented with two episodes of seizures, and complaints of abdominal pain, vomiting, and diarrhea, with no apparent history of rodent contact. Furthermore, the patient’s gastrointestinal symptoms were linked to the emission of suspected tapeworm proglottids in the feces. After excluding other possible etiologies, a diagnosis of Hymenolepis diminuta infection was made, based on the examination of characteristic eggs in a concentrated stool specimen. The infant was successfully treated with praziquantel and fully recovered. After two weeks, the stool sample was free of Hymenolepis diminuta eggs. The clinical follow-up over the next 3 years was normal. Hymenolepis diminuta is rarely found in humans, and, when present, the infection is frequently asymptomatic. Abdominal pain, irritability, itching, eosinophilia, and seizures have also been reported. In this paper, we report, for the first time in the literature, an infection with Hymenolepis diminuta in a Romanian infant who had atypical neurological presentation, with full recovery, without subsequent neurological sequelae.The rapid spread of new outbreaks of human infection caused by Zika virus (ZIKV) has raised many global concerns since 2016. Despite the increasing knowledge of this virus, data on the pathogenesis of ZIKV are still missing. In particular, it is still unknown how the virus crosses the endothelial monolayer and gets access to the bloodstream. In the present work, we used human umbilical vein endothelial cells (HUVECs) as a model to study ZIKV infection in vitro. We demonstrated that HUVECs are an optimal reservoir for viral replication, as they were able to sustain ZIKV infection up to two weeks, without showing a cytopathic effect. In order to evaluate the integrity of endothelial monolayer, immunofluorescence was performed on mock-infected or ZIKV-infected cells ± peripheral blood mononuclear cells (PBMCs) or polymorphonuclear cells (PMN), 48 h p.i., by using an anti-VE-Cadherin antibody, a major adherence protein that maintains the integrity of intercellular junctions. In addition to infection, we noted that the presence of some components of the immune system, such as PMNs, played an important role in altering the endothelial monolayer in cell junctions, suggesting that presence at the site of infection probably promotes the spread of ZIKV in vivo in the bloodstream.In South Korea, despite the increase in emerging viral pathogens in the veterinary industry, only efficacy-tested, virus-specific disinfectants are allowed to be used. Moreover, domestic testing of disinfectants for their virucidal efficacies against foreign, malignant, infectious pathogens that are unreported within the country and/or contagious livestock diseases that require special attention regarding public hygiene are legally restricted. Therefore, the Animal and Plant Quarantine Agency (APQA) designed a study to select a potential biosafety level 2 surrogate of African swine fever virus (ASFV) for efficacy testing to improve the disinfectant approval procedures. For this, the modified vaccinia virus Ankara (MVA) was compared to ASFV in terms of its susceptibility to disinfectants. Effective concentrations of active substances of disinfectants (potassium peroxymonosulfate, sodium dichloroisocyanurate, malic acid, citric acid, glutaraldehyde, and benzalkonium chloride) against ASFV and MVA were compared; similarly, efficacies of APQA-listed commercial disinfectants were examined. Tests were performed according to APQA guidelines, and infectivities of ASFV and MVA were confirmed by hemadsorption and cytopathic effect, respectively. The results reveal that the disinfectants are effective against MVA at similar or higher concentrations than those against ASFV, validating the use of MVA as a potential biosafety level 2 surrogate for ASFV in efficacy testing of veterinary disinfectants.Early detection of Schistosoma japonicum (S. japonicum) within its intermediate and definitive hosts is crucial for case finding and disease surveillance, especially in low-endemic areas. Recombinase polymerase amplification (RPA) has many advantages over traditional methods of DNA-amplification, such as polymerase chain reaction (PCR), including high sensitivity and specificity whilst being deployable in resource-poor schistosomiasis-endemic areas. Here, we evaluated the performance of a basic RPA assay targeting the 28srDNA gene fragment of S. japonicum (Sj28srDNA) using schistosome-infected Oncomelania hupensis (O. hupensis) and mouse models, compared to the traditional pathological method and a PCR assay. Overall S. japonicum infection prevalence within O. hupensis hosts by microscopic dissection, PCR and RPA was 9.29% (13/140), 32.14% (45/140) and 51.43% (72/140), respectively, presenting significant differences statistically (χ2 = 58.31, p < 0.001). It was noteworthy that infection prevalence by PCR and RPA performed was 34.44% (31/90) and 53.33% (48/90) in snails within 6 weeks post-infection, while the dissection method detected all samples as negatives. In addition, the basic RPA assay presented positive results from the fourth week post-infection and third day post-infection when detecting fecal DNA and serum DNA, respectively, which were extracted from a pooled sample from mice infected with 20 S. japonicum cercariae. This study suggests that the RPA assay has high potential for early detection of S. japonicum infection within its intermediate and definitive hosts.
The host factors influencing the susceptibility to and the severity of tick-borne encephalitis (TBE) are poorly defined. The loss-of-function
mutation in the chemokine receptor gene
was identified as a risk factor for West Nile encephalitis and possibly for TBE, suggesting a protective role of CCR5 in
encephalitis.
We studied the
genotype in 205 TBE patients stratified by a clinical presentation and 257 controls from the same endemic area (Podlasie, Poland). The genotype distribution between the groups and differences between TBE patients with different genotypes were analyzed.
There were 36 (17.6%)
heterozygotes and 3 (1.5%) homozygotes in the TBE group, with no statistically significant difference in comparison with the controls. The
allele did not associate with the clinical presentation or the severity of TBE. The cerebrospinal fluid (CSF) inflammatory parameters did not differ between the wild-type (
) and
genotype patients. The TBE clinical presentation and CSF parameters in three
homozygotes were unremarkable.
The lack of association of
with the risk and clinical presentation of TBE challenges the suspected CCR5 protective role. CCR5 is not indispensable for the effective immune response against the TBE virus.
The lack of association of CCR5Δ32 with the risk and clinical presentation of TBE challenges the suspected CCR5 protective role. CCR5 is not indispensable for the effective immune response against the TBE virus.Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus and a major cause of human viral encephalitis in Asia. We provide an overview of the knowledge on vector competence, vector capacity, and immunity of mosquitoes in relation to JEV. JEV has so far been detected in more than 30 mosquito species. This does not necessarily mean that these species contribute to JEV transmission under field conditions. Therefore, vector capacity, which considers vector competence, as well as environmental, behavioral, cellular, and biochemical variables, needs to be taken into account. Currently, 17 species can be considered as confirmed vectors for JEV and 10 other species as potential vectors. Culex tritaeniorhynchus and Culex annulirostris are considered primary JEV vectors in endemic regions. Culex pipiens and Aedes japonicus could be considered as potentially important vectors in the case of JEV introduction in new regions. Vector competence is determined by various factors, including vector immunity. The available knowledge on physical and physiological barriers, molecular pathways, antimicrobial peptides, and microbiome is discussed in detail. This review highlights that much remains to be studied about vector immunity against JEV in order to identify novel strategies to reduce JEV transmission by mosquitoes.The enteric viruses, including adenovirus (AdVs) and norovirus (NoVs), in shellfish is a significant food safety risk. This study investigated the prevalence, seasonal occurrence, genetic diversity, and quantification of AdVs and NoVs in the water and cultured shellfish samples at the four major coastal oyster breeding farms (COBF), five major fishing ports (FP), and their markets in Taiwan. The AdVs/NoVs in the water and shellfish samples were isolated by the membrane filtration and direct elution methods. The RNA of NoVs was reverse-transcribed into complementary DNA through reverse transcription reaction. Further NoVs and AdVs were detected using nested PCR. A higher detection rate was recorded in the low-temperature period than high-temperature. Detection difference was noted between nested PCR and qPCR outcomes for AdVs. The total detection rate of AdVs was higher in the water samples (COBF-40.6%, FP 20%) than the shellfish samples (COBF-11.7% and FP 6.3%). The AdVs load in the water and shellfish samples ranged from 1.23 × 103 to 1.00 × 106 copies/L and 3.57 × 103 to 4.27 × 104 copies/100g, respectively. The total detection of NoVs was highest in the water samples of the FP and their market shellfish samples (11.1% and 3.2%, respectively). Genotyping and phylogenetic analysis were identified as the prevalent AdVs and NoVs genotypes in the water and shellfish samples A species HAdVs serotype 12; F species HAdVs serotype 41; and C species PAdVs serotype 5 (NoVs GI.2, GI.3 and GII.2). No significant differences were observed between the presence of AdVs, and all of the water quality parameters evaluated (heterotrophic plate count, water temperature, turbidity, pH, salinity, and dissolved oxygen). The virus contamination occurs mainly due to the direct discharge of domestic sewage, livestock farm, and fishing market wastewater into the coastal environment. Thus, this study suggested framing better estuarine management to prevent AdVs/NoVs transmission in water and cultured/distributed shellfish.Anaplasma species are obligate intracellular rickettsial vector-borne pathogens that impose economic constraints on animal breeders and threaten human health. Anaplasma ovis and Anaplasma phagocytophilum infect sheep and goats worldwide. A duplex PCR targeting the msp2 and msp4 genes of A. phagocytophilum and A. ovis, respectively, was developed to analyze the field blood samples collected from sheep and goats. A total of 263 apparently healthy small ruminants from 16 randomly selected flocks situated in 3 bioclimatic zones in Tunisia were analyzed for Anaplasma infections. Anaplasma spp. was detected in 78.3% (95% confidence interval (CI) 72.8-83.1) of the analyzed animals. The prevalence of A. ovis in sheep (80.4%) and goats (70.3%) was higher than that of A. phagocytophilum (7.0% in sheep and 1.6% in goats). Using an inexpensive, specific, and rapid duplex PCR assay, we provide, to the best of our knowledge, the first molecular evidence for the presence of A. phagocytophilum in small ruminants in Tunisia. A. phagocytophilum generally presented as a co-infection with A. ovis. This study provides important data to understand the epidemiology of anaplasmosis in small ruminants, and highlights the risk of contracting the infection upon tick exposure.The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the scientific community to acquire knowledge in real-time, when total lockdowns and the interruption of flights severely limited access to reagents as the global pandemic became established. This unique reality made researchers aware of the importance of designing efficient in vitro set-ups to evaluate infectious kinetics. Here, we propose a histology-based method to evaluate infection kinetics grounded in cell microarray (CMA) construction, immunocytochemistry and in situ hybridization techniques. We demonstrate that the chip-like organization of the InfectionCMA has several advantages, allowing side-by-side comparisons between diverse cell lines, infection time points, and biomarker expression and cytolocalization evaluation in the same slide. In addition, this methodology has the potential to be easily adapted for drug screening.(1) Background We conducted a prospective observational cohort study to measure incidence, persistence, and clearance of anal human papillomavirus (HPV) among men who have sex with men (MSM) in China. (2) Methods MSM were recruited in Guangzhou, Shenzhen and Wuxi, China in 2017. A tablet-based questionnaire was used to collect sociodemographic and behavioral characteristics. An anal brush sample was collected for HPV testing and genotyping. Participants were followed up 12 months after enrolment. (3) Results A total of 196 participants completed two HPV tests with a median age of 27.3 (interquartile range (IQR) 24.0-32.8) years. Rate of incidence, persistence, and clearance for HPV among MSM were 31.3 (95% confidence interval (CI) 24.7-39.2), 47.9 (36.8-61.3), and 122.5 (104.3-143.0) per 1000 person months (pm), respectively. HPV 16 (4.1/1000 pm) had the highest incidence rate, and HPV 6 (47.4/1000 pm) had the highest persistence rate. Having lower education and engaging in receptive anal intercourse were potential risk factors of HPV incidence. A higher incidence rate was observed among younger MSM. (4) Conclusions The high incidence and low clearance of anal HPV highlight the necessity of HPV vaccination among MSM. Further studies are needed to clarify the HPV dynamics at multiple anatomical sites and the burden of HPV-related diseases among MSM.The parasite, Babesia divergens causes redwater fever in cattle and a rare, albeit life-threatening disease in humans. In Ireland, B. divergens has always been considered an important pathogen as the high incidence of redwater fever precluded areas of the country from cattle farming. Moreover a relatively large proportion of human cases were reported here. Red deer (Cervus elaphus), which often harbour babesias that are genetically very similar (if not identical) to B. divergens, are quite widespread. In this study 1369 nymphal Ixodes ricinus ticks collected from various habitats were screened for the presence of B. divergens using TaqMan followed by conventional nested PCR. Fragments of the 18S rRNA gene locus (560 bp) were compared against published Irish B. divergens isolates from cattle, humans and red deer. Overall just 1% of I. ricinus nymphs were infected with B. divergens, with similar infection rates in ticks collected from farm- and woodland. Most (90%) 18S rRNA gene fragments derived from woodland ticks were 100% identical to published sequences from cattle and humans. One differed by a single nucleotide polymorphism (SNP) as did two isolates from ticks collected in bogland. Two isolates derived from nymphs collected in farmland differed by 2 and 4 SNPs respectively.The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), poses several challenges to clinicians, due to its unpredictable clinical course. The identification of laboratory biomarkers, specific cellular, and molecular mediators of immune response could contribute to the prognosis and management of COVID-19 patients. Of utmost importance is also the detection of differentially expressed genes, which can serve as transcriptomic signatures, providing information valuable to stratify patients into groups, based on the severity of the disease. The role of biomarkers such as IL-6, procalcitonin, neutrophil-lymphocyte ratio, white blood cell counts, etc. has already been highlighted in recently published studies; however, there is a notable amount of new evidence that has not been summarized yet, especially regarding transcriptomic signatures. Hence, in this review, we assess the latest cellular and molecular data and determine the significance of abnormalities in potential biomarkers for COVID-19 severity and persistence. Furthermore, we applied Gene Ontology (GO) enrichment analysis using the genes reported as differentially expressed in the literature in order to investigate which biological pathways are significantly enriched. The analysis revealed a number of processes, such as inflammatory response, and monocyte and neutrophil chemotaxis, which occur as part of the complex immune response to SARS-CoV-2.The immune system consists of various cells, organs, and processes that interact in a sophisticated manner to defend against pathogens. Upon initial exposure to an invader, nonspecific mechanisms are raised through the activation of macrophages, monocytes, basophils, mast cells, eosinophils, innate lymphoid cells, or natural killer cells. During the course of an infection, more specific responses develop (adaptive immune responses) whose hallmarks include the expansion of B and T cells that specifically recognize foreign antigens. Cell to cell communication takes place through physical interactions as well as through the release of mediators (cytokines, chemokines) that modify cell activity and control and regulate the immune response. One regulator of cell states is the transcription factor Nuclear Factor kappa B (NF-κB) which mediates responses to various stimuli and is involved in a variety of processes (cell cycle, development, apoptosis, carcinogenesis, innate and adaptive immune responses). It consists of two protein classes with NF-κB1 (p105/50) and NF-κB2 (p100/52) belonging to class I, and RelA (p65), RelB and c-Rel belonging to class II. The active transcription factor consists of a dimer, usually comprised of both class I and class II proteins conjugated to Inhibitor of κB (IκB). Through various stimuli, IκB is phosphorylated and detached, allowing dimer migration to the nucleus and binding of DNA. NF-κB is crucial in regulating the immune response and maintaining a balance between suppression, effective response, and immunopathologies. Parasites are a diverse group of organisms comprised of three major groups protozoa, helminths, and ectoparasites. Each group induces distinct effector immune mechanisms and is susceptible to different types of immune responses (Th1, Th2, Th17). This review describes the role of NF-κB and its activity during parasite infections and its contribution to inducing protective responses or immunopathologies.Between November 2020 and May 2021, Germany faced the largest highly pathogenic avian influenza (HPAI) epidemic recorded so far with 245 outbreaks in poultry and captive birds and more than 1000 diagnosed cases in wild birds. In March 2021, an HPAI outbreak of subtype H5N8 was confirmed in a holding rearing laying hens for sales. Disease introduction probably occurred via indirect contact with infected wild birds. Since the index farm sold chicken to customers including many smallholders, partly in travel trade, the primary outbreak triggered 105 known secondary outbreaks in five German federal states. An outbreak investigation was carried out with links between the involved farms retrieved from the German Animal Disease Notification System used for network analysis. In some cases, links were confirmed through sequence-based molecular analysis. Special emphasis was put on the estimation of the flock incubation period as a prerequisite of sound contact tracing. The unique circumstances of an outbreak farm with frequent direct trade contacts prior to disease suspicion enabled an assessment of the flock incubation period based on the consequences of contacts, further supported by molecular analysis and modeling of disease spread. In this case, the flock incubation period was at least 14 days.The interaction of the nervous, immune, and endocrine systems is crucial in maintaining homeostasis in vertebrates, and vital in mammals. The spleen is a key organ that regulates the neuroimmunoendocrine system. The Taenia crassiceps mouse system is an excellent experimental model to study the complex host-parasite relationship, particularly sex-associated susceptibility to infection. The present study aimed to determine the changes in neurotransmitters, cytokines, sex steroids, and sex-steroid receptors in the spleen of cysticercus-infected male and female mice and whole parasite counts. We found that parasite load was higher in females in comparison to male mice. The levels of the neurotransmitter epinephrine were significantly decreased in infected male animals. The expression of IL-2 and IL-4 in the spleen was markedly increased in infected mice; however, the expression of Interleukin (IL)-10 and interferon (IFN)-γ decreased. We also observed sex-associated differences between non-infected and infected mice. Interestingly, the data show that estradiol levels increased in infected males but decreased in females. Our studies provide evidence that infection leads to changes in neuroimmunoendocrine molecules in the spleen, and these changes are dimorphic and impact the establishment, growth, and reproduction of T. crassiceps. Our findings support the critical role of the neuroimmunoendocrine network in determining sex-associated susceptibility to the helminth parasite.Tetracycline resistance (TetR) has been evidenced as a good phenotypic marker for detection of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) isolates of the clonal complex CC398. The aim of this study was to characterise a collection of 95 TetR-MRSA isolates, not belonging to the lineage CC398, that were obtained in a previous multicentre study, to detect other MRSA clonal complexes that could be associated with this phenotypic TetR marker. The TetR-MRSA isolates were recovered from 20 Spanish hospitals during 2016 and they were characterised to determine their antimicrobial resistance and virulence phenotypes/genotypes as well as the presence of the immune evasion cluster (IEC). A high proportion of isolates belonging to the CC1 lineage (46%) were observed, as well as to the CC5, CC8 and CC45 lineages (11% each one). Thirty-two different spa-types were identified, being predominantly CC1-t127 (40%) and CC45-t1081 (11%). The IEC system (with the gene scn as marker) was present in 73% of isolates and 16% produced the Panton Valentine leucocidin (PVL). A high proportion of MRSA-CC1 isolates were scn-negative (38.6%) and 52.9% of them were blaZ-negative. A multidrug resistance (MDR) phenotype was identified in 86% of MRSA isolates. The knowledge of other TetR-MRSA genetic lineages, in addition to CC398, is highly relevant, since most of them were MDR and some of them presented important virulence factors. Strains potentially associated with livestock (as the subpopulation CC1-t127-scn-negative) or with humans (as the CC45 lineage or the subpopulation CC1-scn-positive) have been found in this study. The use of tetracycline-resistance for detection, not only of CC398 but also of other LA-MRSA lineages should be tracked in the future.Infections caused inadvertently during clinical intervention provide valuable insight into the spectrum of human responses to viruses. Delivery of hepatitis C virus (HCV)-contaminated blood products in the 70s (before HCV was identified) have dramatically increased our understanding of the natural history of HCV infection and the role that host immunity plays in the outcome to viral infection. In Ireland, HCV-contaminated anti-D immunoglobulin (Ig) preparations were administered to approximately 1700 pregnant Irish rhesus-negative women in 1977-1979. Though tragic in nature, this outbreak (alongside a smaller episode in 1993) has provided unique insight into the host factors that influence outcomes after HCV exposure and the subsequent development of disease in an otherwise healthy female population. Despite exposure to highly infectious batches of anti-D, almost 600 of the HCV-exposed women have never shown any evidence of infection (remaining negative for both viral RNA and anti-HCV antibodies). Detailed analysis of these individuals may shed light on innate immune pathways that effectively block HCV infection and potentially inform us more generally about the mechanisms that contribute to viral resistance in human populations.During the annual hunt in a privately owned Austrian game population in fall 2019 and 2020, 64 red deer (Cervus elaphus), 5 fallow deer (Dama dama), 6 mouflon (Ovis gmelini musimon), and 95 wild boars (Sus scrofa) were shot and sampled for PCR testing. Pools of spleen, lung, and tonsillar swabs were screened for specific nucleic acids of porcine circoviruses. Wild ruminants were additionally tested for herpesviruses and pestiviruses, and wild boars were screened for pseudorabies virus (PrV) and porcine lymphotropic herpesviruses (PLHV-1-3). PCV2 was detectable in 5% (3 of 64) of red deer and 75% (71 of 95) of wild boar samples. In addition, 24 wild boar samples (25%) but none of the ruminants tested positive for PCV3 specific nucleic acids. Herpesviruses were detected in 15 (20%) ruminant samples. Sequence analyses showed the closest relationships to fallow deer herpesvirus and elk gammaherpesvirus. In wild boars, PLHV-1 was detectable in 10 (11%), PLHV-2 in 44 (46%), and PLHV-3 in 66 (69%) of animals, including 36 double and 3 triple infections. No pestiviruses were detectable in any ruminant samples, and all wild boar samples were negative in PrV-PCR. Our data demonstrate a high prevalence of PCV2 and PLHVs in an Austrian game population, confirm the presence of PCV3 in Austrian wild boars, and indicate a low risk of spillover of notifiable animal diseases into the domestic animal population.This study aimed to investigate the potential of H9N2 avian influenza virus to cause disease and intra-species transmission in house crows (Corvus splendens). A group of six crows were intranasally inoculated with 106.0 EID50 of H9N2 virus (A/chicken/India/07OR17/2021), and 24 h post-inoculation six naïve crows were co-housed with infected crows. Crows were observed for 14 days for any overt signs of illness. Oropharyngeal and cloacal swabs were collected up to 14 days to assess virus excretion. No apparent clinical signs were observed in either infected or in-contact crows. Virus excretion was observed only in infected birds up to 9 days post-infection (dpi) through both oropharyngeal and cloacal routes. All six infected crows seroconverted to H9N2 virus at 14 dpi, whereas all in-contact crows remained negative to H9N2 virus antibodies. No virus could be isolated from tissues viz., lung, liver, kidney, pancreas, small intestine and large intestine. Although crows became infected with the H9N2 virus, transmission of the virus was inefficient to the in-contact group. However, virus excretion through oral and cloacal swabs from infected crows suggests a potential threat for inter-species transmission, including humans. Crows, being a common synanthrope species, might have some role in influenza virus transmission to poultry and humans, which needs to be explored further.Myxosporeans are well-known parasites infecting food fishes in fresh and marine water around the globe. Grass carp (Ctenopharyngodon idella), a freshwater food fish commonly cultured in India with has significant economic importance. Herein, the study focuses on the description of a new myxosporean species, Myxobolus grassi sp. nov. from the gills as primary site and liver as secondary site of infection in grass carp. Both organs (gill and liver) were infected concurrently in the host and the prevalence of grass carp infection was 4.05% in gill filaments and liver, respectively. Identification of species was based on the morphological and morphometric features of the myxospore as well as 18S rDNA sequence data. A smear from gill and liver exhibited hundreds of morphologically similar myxospores. BLAST search revealed 98% sequence similarity and 0.03 genetic distance with M. catlae (KM029967) infecting gill lamellae of mrigal carp (Cirrhinus cirrhosus) from India and 98-84% sequence similarity with other myxobolids in India, China, Japan, Malaysia, Turkey and Hungary. Phylogenetically, it clustered with other myxobolids infecting gills and related organs (i.e., vital organ) of Indian cyprinid carp species. On the basis of myxospore morphology and 18S sequence, we propose M. grassi sp. nov.In the ongoing coronavirus diseases 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), real-time RT-PCR based diagnostic assays have been used for the detection of infection, but the positive signal of real-time RT-PCR does not necessarily indicate the infectivity of the patient. Due to the unique replication system of the coronavirus, primer/probe sets targeted nucleocapsid (N) and spike (S) protein detect the abundantly synthesized subgenomic RNAs as well as the virus genome, possibly making the assay unsuitable for estimation of the infectivity of the specimen, although it has an advantage for the diagnostic tests. In this study, the primer/probe set targeting the open reading frame 1a (ORF1a) gene was developed to specifically detect viral genomic RNA. Then the relation between the ORF1a signal and infectivity of the clinical specimens was validated by virus isolation using VeroE6 cells, which constitutively express transmembrane protease, serine 2, (VeroE6/TMPRSS2). The analytical sensitivity of developed ORF1a set was similar to that of previously developed N and S sets. Nevertheless, in the assay of the clinical specimen, detection rate of the ORF1a gene was lower than that of the N and S genes. These data indicated that clinical specimens contain a significant amount of subgenomic RNAs. However, as expected, the isolation-succeeded specimen always showed an RT-PCR-positive signal for the ORF1a gene, suggesting ORF1a detection in combination with N and S sets could be a more rational indicator for the possible infectivity of the clinical specimens.Our study analyzed the parasitological status, antibody responses, and antioxidant parameters of lambs experimentally infected with a gastrointestinal nematode during the consumption of sainfoin pellets (SFPs) for 14 d. Twenty-four lambs infected with Haemonchus contortus were separated into two groups untreated animals (control) and animals treated with SFPs (600 g dry matter/d). SFP treatment began on day (D) 30 post-infection. The number of eggs per gram (EPG) of feces was quantified on D18, D23, D26, D30, D33, D37, D40, and D44. The mean reductions in EPG on D40 and D44 were 33.6 and 36.7%, respectively. The number of abomasal worms was lower for the SFP than the control group (p < 0.05). SFP treatment did not significantly affect either the total or the local antibody response (p > 0.05). The blood activity of glutathione peroxidase was affected by the treatment (p < 0.022). Adult worms were selected for scanning electron microscopy after necropsy, but surface structures of adult H. contortus females did not differ between the groups. The treatment of lambs with SFPs directly affected the dynamics of infection, probably indirectly by mobilizing the antioxidant defensive system and antibody response thus improving animal resistance.Pseudomonas aeruginosa is associated with several human infections, mainly related to healthcare services. In the hospital, it is associated with resistance to several antibiotics, which poses a great challenge to therapy. However, one of the biggest challenges in treating P. aeruginosa infections is that related to biofilms. The complex structure of the P. aeruginosa biofilm contributes an additional factor to the pathogenicity of this microorganism, leading to therapeutic failure, in addition to escape from the immune system, and generating chronic infections that are difficult to eradicate. In this review, we address several molecular aspects of the pathogenicity of P. aeruginosa biofilms.


