-
Faircloth Henningsen opublikował 5 miesięcy, 1 tydzień temu
The discovery of novel biomarkers for peripartal diseases in dairy cows can improve our understanding of normal and dysfunctional metabolism, and lead to nutritional interventions that improve health and milk production. Our objectives were to characterize the plasma lipidome and identify metabolites associated with common markers of metabolic disease in peripartal dairy cattle. Multiparous Holstein cows (n = 27) were enrolled 30 d prior to expected parturition. Blood and liver samples were routinely collected through to d 14 postpartum. Untargeted lipidomics was performed using quadrupole time-of-flight mass spectrometry. Based on postpartum measures, cows were categorized into low or high total fatty acid area under the curve (total FAAUC; d 1-14 postpartum; 4915 ± 1369 vs. 12,501 ± 2761 (μmol/L × 14 d); n = 18), β-hydroxybutyrate AUC (BHBAAUC; d 1-14 postpartum; 4583 ± 459 vs. 7901 ± 1206 (μmol/L × 14 d); n = 18), or liver lipid content (d 5 and 14 postpartum; 5 ± 1 vs. 12 ± 2% of wet weight; n = 18). Cows displayed decreases in plasma triacylglycerols and monoalkyl-diacylglycerols, and the majority of phospholipids reached a nadir at parturition. Phosphatidylcholines (PC) 323, 355, and 375 were specific for high total FAAUC, PC 313, 323, 355, and 375 were specific for high BHBAAUC, and PC 312, 313, and 323 were specific for high liver lipid content. PC 323 was specific for elevated total FA, BHBA, and liver lipid content. Lipidomics revealed a dynamic peripartal lipidome remodeling, and lipid markers associated with elevated total FA, BHBA, and liver lipid content. The effectiveness of nutrition to impact these lipid biomarkers for preventing excess lipolysis and fatty liver warrants evaluation.Persistent organic pollutants (POPs) are organic compounds that resist biochemical degradation, moving long distances across the atmosphere before deposition occurs. Our goal was to provide up-to-date data on the levels of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in breast milk from Chilean women and to estimate the exposure of infants due to breast milk consumption. In Chile, we conducted a cross-sectional study based on methodologies proposed by the WHO, with a sample of 30 women recruited from three defined areas 10 from the Arica Region (urban; Arica and Parinacota Region), 10 from Coltauco (rural; O’Higgins Region), and 10 from Molina (40% rural; Maule Region). High-resolution gas chromatography coupled with high-resolution mass spectrometry (HRGC/HRMS) was performed on pooled samples from each area. We calculated equivalent toxic concentrations (WHO-TEQ) based on the current WHO Toxic Equivalency Factors (TEF). The minimum and maximum values of ∑ PCDDs/Fs + DL-PCBs-TEQ were 4.317 pg TEQ/g fat in Coltauco and 6.31 pg TEQ/g fat in Arica. Molina had a total TEQ of 5.50 pg TEQ/g fat. The contribution of PCDD/Fs was approximately five-fold higher than that of DL-PCBs. The Estimated Daily Intake (EDI) of ∑ PCDDs/Fs + DL-PCBs based on the three pooled samples ranged between 6.71 and 26.28 pg TEQ/kg body weight (bw)/day, with a mean intake of 16.11 (±6.71) pg TEQ/kg bw/day in breastfed children from 0 to 24 months old. These levels were lower than those reported in international studies. Despite the fact that the observed levels were low compared to those in most industrialized countries, the detection of a variety of POPs in breast milk from Chilean women indicates the need for follow-up studies to determine whether such exposures during childhood could represent a health risk in adulthood.Mid-infrared (MIR) wavelengths (2-10 μm) open up a new paradigm for femtosecond laser-solid interactions. On a fundamental level, compared to the ubiquitous near-IR (NIR) or visible (VIS) laser interactions, MIR photon energies render semiconductors to behave like high bandgap materials, while driving conduction band electrons harder due to the λ2 scaling of the ponderomotive energy. From an applications perspective, many VIS/NIR opaque materials are transparent for MIR. This allows sub-surface modifications for waveguide writing while simultaneously extending interactions to higher order processes. Here, we present the formation of an extreme sub-wavelength structure formation (∼λ/100) on a single crystal silicon surface by a 3600 nm MIR femtosecond laser with a pulse duration of 200 fs. The 50-100 nm linear structures were aligned parallel to the laser polarization direction with a quasi-periodicity of 700 nm. The dependence of the structure on the native oxide, laser pulse number, and polarization were studied. The properties of the structures were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), cross-sectional transmission electron-microscopy (CS-TEM), electron diffraction (ED), and energy-dispersive X-ray spectroscopy (EDX). As traditional models for the formation of laser induced periodic surface structure do not explain this structure formation, new theoretical efforts are needed.An increasing number of driver genomic alterations with potential targeted treatments have been identified in non-small cell lung cancer (NSCLC). Much less is known about the incidence and different distribution of concurrent alterations, as identified by comprehensive genomic profiling in oncogene-addicted NSCLCs. Genomic data from advanced NSCLC consecutively analyzed using a broad next-generation sequencing panel were retrospectively collected. Tumors harboring at least one main actionable gene alteration were categorized according to the presence/absence of concurrent genomic aberrations, to evaluate different patterns among the main oncogene-addicted NSCLCs. Three-hundred-nine actionable gene alterations were identified in 284 advanced NSCLC patients during the study period. Twenty-five tumor samples (8%) displayed concurrent alterations in actionable genes. Co-occurrences involving any pathogenic variant or copy number variation (CNV) were identified in 82.8% of cases. Overall, statistically significant differences in the number of concurrent alterations, and the distribution of TP53, STK11, cyclines and receptor tyrosin kinase (RTK) aberrations were observed across the eight actionable gene groups. NGS analyses of oncogene-addicted NSCLCs showed a different distribution and pattern of co-alteration profiles. Further investigations are needed to evaluate the prognostic and treatment-related impact of these concurrent alterations, hooked to the main gene aberrations.Investigations of the differences in the metabolites of medicinal plants have typically focused on the effects of external environmental factors. However, little is known about the relationship between endophytes diversity and host metabolites. We used high-throughput sequencing methods to compare the endophyte diversity of Rheum palmatum from eight different production areas in Gansu Province of China and to analyze the association between those areas and five secondary metabolites (aloe-emodin, rhein, emodin, chrysophanol, and physcion). The results show that the diversity and OTUs (Operational taxonomic units) abundance of endophytic fungi and bacteria of R. palmatum differed according to production area. Spearman analysis showed that the five secondary metabolites of R. palmatum were positively correlated with the diversity and abundance of endophytic fungi. Comparing both space and environmental differences to determine influences on community structure, VPA analysis revealed that geographic factors explained more difference in community composition of fungal and bacterial endophytes than climate factors. PICRUSt and FUNGuild predictive analysis indicated that metabolites were the primary components of endophytic bacteria in all samples, while the function of endophytic fungi was composed of dominant trophic modes (saprotroph and pathotroph), and relative abundances were different. Our results help elucidate the correlation of plant-microbe interactions and offer pivotal information to reveal the role of endophytes in the production of R. palmatum and its important secondary metabolite.The objective of this work was to study the influence of cellulose nanofibrils (CNF) on the physical, mechanical, and thermal properties of Jatropha oil-based waterborne polyurethane (WBPU) nanocomposite films. The polyol to produce polyurethane was synthesized from crude Jatropha oil through epoxidation and ring-opening method. The chain extender, 1,6-hexanediol, was used to improve film elasticity by 0.1, 0.25, and 0.5 wt.% of CNF loading was incorporated to enhance film performance. Mechanical performance was studied using a universal test machine as specified in ASTM D638-03 Type V and was achieved by 0.18 MPa at 0.5 wt.% of CNF. Thermal gravimetric analysis (TGA) was performed to measure the temperature of degradation and the chemical crosslinking and film morphology were studied using Fourier-transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The results showed that when the CNF was incorporated, it was found to enhance the nanocomposite film, in particular its mechanical and thermal properties supported by morphology. Nanocomposite film with 0.5 wt.% of CNF showed the highest improvement in terms of tensile strength, Young’s modulus, and thermal degradation. Although the contact angle decreases as the CNF content increases, the effect on the water absorption of the film was found to be relatively small ( less then 3.5%). The difference between the neat WPBU and the highest CNF loading film was not more than 1%, even after 5 days of being immersed in water.Endothelial progenitor cells (EPCs) are specialized cells in circulating blood, well known for their ability to form new vascular structures. Aging and various ailments such as diabetes, atherosclerosis and cardiovascular disease make EPCs vulnerable to decreasing in number, which affects their migration, proliferation and angiogenesis. Myocardial ischemia is also linked to a reduced number of EPCs and their endothelial functional role, which hinders proper blood circulation to the myocardium. The current study shows that an aminopyrimidine derivative compound (CHIR99021) induces the inhibition of GSK-3β in cultured late EPCs. GSK-3β inhibition subsequently inhibits mTOR by blocking the phosphorylation of TSC2 and lysosomal localization of mTOR. Furthermore, suppression of GSK-3β activity considerably increased lysosomal activation and autophagy. The activation of lysosomes and autophagy by GSK-3β inhibition not only prevented replicative senescence of the late EPCs but also directed their migration, proliferation and angiogenesis. To conclude, our results demonstrate that lysosome activation and autophagy play a crucial role in blocking the replicative senescence of EPCs and in increasing their endothelial function. Thus, the findings provide an insight towards the treatment of ischemia-associated cardiovascular diseases based on the role of late EPCs.Anterior cruciate ligament (ACL) injury represents one of the main disorders affecting players, especially in contact sports. Even though several approaches based on artificial intelligence have been developed to allow the quantification of ACL injury risk, their applicability in training sessions compared with the clinical scale is still an open question. We proposed a machine-learning approach to accomplish this purpose. Thirty-nine female basketball players were enrolled in the study. Leg stability, leg mobility and capability to absorb the load after jump were evaluated through inertial sensors and optoelectronic bars. The risk level of athletes was computed by the Landing Error Score System (LESS). A comparative analysis among nine classifiers was performed by assessing the accuracy, F1-score and goodness. Five out nine examined classifiers reached optimum performance, with the linear support vector machine achieving an accuracy and F1-score of 96 and 95%, respectively. The feature importance was computed, allowing us to promote the ellipse area, parameters related to the load absorption and the leg mobility as the most useful features for the prediction of anterior cruciate ligament injury risk.