-
Faircloth Therkildsen opublikował 1 rok, 3 miesiące temu
The biological impact of exogenous, alternating electric fields (AEFs) and direct-current electric fields has a long history of study, ranging from effects on embryonic development to influences on wound healing. In this article, we focus on the application of electric fields for the treatment of cancers. In particular, we outline the clinical impact of tumor treating fields (TTFields), a form of AEFs, on the treatment of cancers such as glioblastoma and mesothelioma. We provide an overview of the standard mechanism of action of TTFields, namely, the capability for AEFs (e.g., TTFields) to disrupt the formation and segregation of the mitotic spindle in actively dividing cells. Though this standard mechanism explains a large part of TTFields’ action, it is by no means complete. The standard theory does not account for exogenously applied AEFs’ influence directly upon DNA nor upon their capacity to alter the functionality and permeability of cancer cell membranes. This review summarizes the current literature to provide a more comprehensive understanding of AEFs’ actions on cell membranes. It gives an overview of three mechanistic models that may explain the more recent observations into AEFs’ effects the voltage-gated ion channel, bioelectrorheological, and electroporation models. Inconsistencies were noted in both effective frequency range and field strength between TTFields versus all three proposed models. We addressed these discrepancies through theoretical investigations into the inhomogeneities of electric fields on cellular membranes as a function of disease state, external microenvironment, and tissue or cellular organization. Lastly, future experimental strategies to validate these findings are outlined. Clinical benefits are inevitably forthcoming.Targeted therapy has been developed through an in-depth understanding of molecular pathways involved in the pathogenesis of melanoma. Approximately ~50% of patients with melanoma have tumors that harbor a mutation of the BRAF oncogene. Certain clinical features have been identified in BRAF-mutated melanomas (primary lesions located on the trunk, diagnosed in patients less then 50, visibly pigmented tumors and, at times, with ulceration or specific dermatoscopic features). While BRAF mutation testing is recommended for stage III-IV melanoma, guidelines differ in recommending mutation testing in stage II melanoma patients. To fully benefit from these treatment options and avoid delays in therapy initiation, advanced melanoma patients harboring a BRAF mutation must be identified accurately and quickly. To achieve this, clear definition and implementation of BRAF reflex testing criteria/methods in melanoma should be established so that patients with advanced melanoma can arrive to their first medical oncology appointment with a known biomarker status. Reflex testing has proven effective for a variety of cancers in selecting therapies and driving other medical decisions. We overview the pathophysiology, clinical presentation of BRAF-mutated melanoma, current guidelines, and present recommendations on BRAF mutation testing. We propose that reflex BRAF testing should be performed for every melanoma patient with stages ≥IIB.The outbreak of COVID-19 has resulted in many different policies being adopted across the world to reduce the spread of the virus. These policies include wearing surgical masks, hand hygiene practices, increased social distancing and full country-wide lockdown. Specifically, social distancing involves keeping a certain distance from others and avoiding gathering together in large groups. Automatic crowd density estimation is a technological solution that could help in guaranteeing social distancing by reducing the probability that two persons in a public area come in close proximity to each other while moving around. This paper proposes a novel low complexity RF sensing system for automatic people counting based on low cost UWB transceivers. The proposed system is based on an ordinary classifier that exploits features extracted from the channel impulse response of UWB communication signals. Specifically, features are extracted from the sorted list of singular values obtained from the singular value decomposition applied to the matrix of the channel impulse response vector differences. Experimental results achieved in two different environments show that the proposed system is a promising candidate for future automatic crowd density monitoring systems.This work demonstrates the effects of a newly synthesized conjugate of the plant triterpenoid betulin and the penetrating cation F16 used for mitochondrial targeting. The resulting F16-betulin conjugate revealed a mitochondria-targeted effect, decreasing the mitochondrial potential and inducing superoxide overproduction in rat thymocytes in vitro. It has been suggested that this may cause the cytotoxic effect of the conjugate, which significantly exceeds the effectiveness of its precursors, betulin and F16. Using isolated rat liver mitochondria, we found that the F16-betulin conjugate has a surface-active effect on mitochondrial membranes, causing organelle aggregation. This effect of the derivative resulted in a dose-dependent decrease in mitochondrial transmembrane potential, as well as suppression of respiration and oxidative phosphorylation, especially in the case of nicotinamide adenine dinucleotide (NAD)-fueled organelles. In addition, the F16-betulin conjugate caused an increase in H2O2 generation by mitochondria fueled with glutamate and malate. These effects of the derivative can presumably be due to the powerful suppression of the redox activity of complex I of the mitochondrial electron transport chain. The paper discusses how the mitochondria-targeted effects of the F16-betulin conjugate may be related to its cytotoxic effects.Holotrichia parallela is one of the agriculturally important scarab beetle pests in China. In this study, HparOBP14 was cloned, which is the most abundantly expressed among the OBP genes in the legs of female H. parallela adults. Sequence comparison and phylogenetic analysis showed that HparOBP14 has a Plus-C structure motif. The expression profile analysis revealed that HparOBP14 expression was the highest in the female antennae and then in the legs. The fluorescence competitive binding experiment of the recombinant HparOBP14 protein showed that HparOBP14 had an affinity with 6-methyl-5-heptene-2-one (plant volatile), 3-methylindole, p-cymene, methanol, formaldehyde, α-pinene, and geraniol (organic fertilizer volatile). Knockdown HparOBP14 expression decreased significantly the EAG response of the injected female adults to p-cymene, methanol, formaldehyde, α-pinene, and geraniol. Similarly, the injected female adults were significantly less attracted to geraniol and methanol. Therefore, HparOBP14 might bind organic matter volatiles during oviposition. These results are not only helpful to analyze the olfactory recognition mechanism of female adult H. parallela when choosing suitable oviposition sites, but also to provide target genes for green prevention and control of H. parallela in the future.This literature review has examined the use of FRP composite materials as a potential retrofitting technique for civil structures. Importantly, the various material properties, bond mechanisms, durability issues and fatigue resistance have been discussed. Studies exploring the performance of CFRP repaired steel have strongly indicated its potential as a rehabilitation material. These systems offer many improvements over the current bulky and less chemically resistant methods of bolting or welding steel plate patches. This review has established and highlighted the factors that affect CFRP/steel bond durability, namely surface preparation, curing, corrosion, fatigue loading, temperature and moisture ingress through studies that focus on their effect. These studies, however, often focus on a single influencing factor or design criteria. Only limited studies have investigated multiple parameters applied simultaneously, even though they commonly occur together in industrial practice. This review aimed to summarise the numerous influencing parameters to give a clearer understanding of the relevance of CFRP repaired steel structures.Chorea-acanthocytosis (ChAc) is a neurodegenerative disease caused by mutations in the VPS13A gene. It is characterized by several neurological symptoms and the appearance of acanthocytes. Elevated tyrosine kinase Lyn activity has been recently identified as one of the key pathophysiological mechanisms in this disease, and therefore represents a promising drug target. Methods We evaluated an individual off-label treatment with the tyrosine kinase inhibitor dasatinib (100 mg/d, 25.8-50.4 weeks) of three ChAc patients. Alongside thorough safety monitoring, we assessed motor and non-motor scales (e.g., MDS-UPDRS, UHDRS, quality of life) as well as routine and experimental laboratory parameters (e.g., serum neurofilament, Lyn kinase activity, actin cytoskeleton in red blood cells). Results Dasatinib appeared to be reasonably safe. The clinical parameters remained stable without significant improvement or deterioration. Regain of deep tendon reflexes was observed in one patient. Creatine kinase, serum neurofilament levels, and acanthocyte count did not reveal consistent effects. However, a reduction of initially elevated Lyn kinase activity and accumulated autophagy markers, as well as a partial restoration of the actin cytoskeleton, was found in red blood cells. Conclusions We report on the first treatment approach with disease-modifying intention in ChAc. The experimental parameters indicate target engagement in red blood cells, while clinical effects on the central nervous system could not be proven within a rather short treatment time. Limited knowledge on the natural history of ChAc and the lack of appropriate biomarkers remain major barriers for „clinical trial readiness”. We suggest a panel of outcome parameters for future clinical trials in ChAc.Transdermal drug delivery is used to deliver a drug by eliminating the first-pass metabolism, which increases the bioavailability of the drug. The present study aims to formulate the chitosan-tamarind seed polysaccharide composite films and evaluate for the delivery of protein/peptide molecules. Nine formulations were prepared and evaluated by using different parameters, such as physical appearance, folding endurance, thickness of film, surface pH, weight variation, drug content, surface morphology, percentage moisture intake and uptake, drug release kinetics, and drug permeability. The film weight variance was observed between 0.34 ± 0.002 to 0.47 ± 0.003 g. The drug level of the prepared films was found to be between 96 ± 1.21 and 98 ± 1.33μg. Their intake of moisture ranged between 2.83 ± 0.002 and 3.76 ± 0.001 (%). The moisture absorption of the films ranged from 5.33 ± 0.22 to 10.02 ± 0.61 (%). SEM images revealed a smooth film surface, while minor cracks were found in the film after permeation tests. During the first 4 days, drug release was between 13.75 ± 1.64% and 22.54 ± 1.34% and from day 5 to day 6, it was between 72.67 ± 2.13% and 78.33 ± 3.13%. Drug permeation during the first 4 days was 15.78 ± 1.23 %. Drug permeation (%) during the first 4 days was between 15.78 ± 1.23 and 22.49 ± 1.29 and from day 5 to day 6, it was between 71.49 ± 3.21 and 77.93 ± 3.20.


