• Agger Cooney opublikował 5 miesięcy, 2 tygodnie temu

    Extracts generated with SFE showed increased antimicrobial activities including the presence of activities not explained by known myxobacterial secondary metabolites, highlighting the advantage of SFE for bioactivity-guided isolation. Moreover, non-targeted metabolomics analysis revealed a group of chlorinated metabolites produced by the well-studied model myxobacterium Myxococcus xanthus DK1622, which were not accessible previously due to their low concentration in conventional extracts. The enriched SF extracts were used for isolation and subsequent structure elucidation of chloroxanthic acid A as the founding member of a novel secondary metabolite family. Our findings encourage the increased utilization of SFE as a part of future screening workflows of microbial natural products.NH3 is mainly obtained by the Haber-Bosch method in the process of industrial production, which is not only accompanied by huge energy consumption but also environmental pollution. The reduction of N2 to NH3 under mild conditions is an important breakthrough to solve the current energy and environmental problems, so the preparation of catalysts that can effectively promote the reduction of N2 is a crucial step. In this work, BiVO4 decorated with amorphous MnCO3/C double layers has been successfully synthesized by a one-step method for the first time. The C and MnCO3 have been formed as ultrathin film, which enables the establishment of a uniform and tight interface with BiVO4. The temperature-programmed desorption of N2 (N2-TPD) spectra confirmed that the MnCO3/C could endow BiVO4 with a drastic enhancement of the chemical absorption ability of a N2 molecule compared with the pristine BiVO4. Meanwhile, the method of isotope labeling proved that the catalyst exhibited excellent selectivity for the photocatalytic nitrogen reduction reaction (NRR). The production rate of NH3 up to 2.426 mmol m-2 h-1 has been achieved over the BiVO4/MnCO3/C, which is almost 8 times that of pristine BiVO4. The promoted production rate of NH3 over BiVO4/MnCO3/C could be mainly attributed to the cooperative process between MnCO3 and C amorphous layers. Therefore, this work could provide an alternative insight to understand the NRR process based on the model of a hierarchical amorphous structure.Epidemiological evidence shows that the body burden of polycyclic aromatic hydrocarbons (PAHs) is related to the disruption of glucose homeostasis. However, the contribution of PAHs to the development of diabetes remains poorly documented. In the current work, male Kunming mice received phenanthrene (Phe) (5, 50, and 500 ng/kg) by gavage administration once every 2 days for 28 weeks. The significant elevation of homeostasis model assessment-insulin resistance (HOMA-IR) and HOMA-β cell, accompanied by hyperinsulinemia, indicated the occurrence of insulin resistance. The suppression of the insulin receptor signaling pathway in skeletal muscle might be responsible for glucose intolerance. Under the nonobese state, the serum levels of resistin, tumor necrosis factor-α, and interleukin-6 were elevated, whereas the levels of adiponectin were reduced. These changes in adipocytokine levels were consistent with their transcription in white adipose tissue. The promoter methylation levels of Retn (encoding resistin) and Adipoq (encoding adiponectin) were inversely correlated with their mRNA levels, indicating that Phe exposure could cause the disruption of adipocytokine secretion via epigenetic modification. The results would be helpful for understanding the pathogenesis in the development of T2DM caused by nonobesogenic pollutants.Polycyclic aromatic hydrocarbons (PAHs) are mutagenic and carcinogenic. 16 PAHs as priority pollutants listed by the US Environmental Protection Agency were usually monitored. Therefore, multiple potentially toxic polycyclic aromatic compounds (PACs) are not monitored. In this study, atmospheric particulate matter samples from Beijing were analyzed using atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and comprehensive two-dimensional gas chromatography-time-of-flight (GC × GC-TOF) mass spectrometry. The FT-ICR data detected high molecular weight PAHs, alkylated PAHs (APAHs) and heteroatom PAHs. The GC × GC-TOF data tentatively identified 386 PACs in five categories of identification confidence. Twenty-one spectra in the unknown class were manually resolved. Eighty-two PACs with high identification confidence were proposed for further research. The identities of five PAHs and five APAHs that are currently not regulated were confirmed using available standards and quantified in some samples. Some of these PACs, such as dibenzo[a,e]pyrene (C22H14) and 1-methylpyrene (C17H12), should be of concern because of their contamination levels and the high toxicities of themselves and/or their derivatives. This study highlights the possibility of expanding the traditional lists of PAHs to improve pollution control and risk assessment accuracy.An innovative form of Fisher ratio (F-ratio) analysis (FRA) is developed for use with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC-TOFMS) data and applied to the investigation of the changes in the metabolome in human plasma for patients with injury to their anterior cruciate ligament (ACL). Specifically, FRA provides a supervised discovery of metabolites that express a statistically significant variance in a two-sample class comparison patients and healthy controls. The standard F-ratio utilizes the between-class variance relative to the pooled within-class variance. Because standard FRA is adversely impacted by metabolites expressed with a large within-class variance in the patient class, „control-normalized FRA” has been developed to provide complementary information, by normalizing the between-class variance to the variance of the control class only. Thirty plasma samples from patients who recently suffered from an ACL injury, along with matched controls, were subjected to GC × GC-TOFMS analysis. Following both standard and control-normalized FRA, the concentration ratio for the top 30 „hits” in each comparison was obtained and then t-tested for statistical significance. Twenty four out of 30 metabolites plus the therapeutic agent, naproxen (24/30), passed the t-test for the control-normalized FRA, which included 8/24 unique to control-normalized FRA and 16/24 in common with the standard FRA. Likewise, standard FRA provided 21/30 metabolites passing the t-test, with 5/21 undiscovered by control-normalized FRA. The complementary information obtained by both F-ratio analyses demonstrates the general utility of the new approach for a variety of applications.Green tea catechins are well known for their health benefits. However, these compounds can easily be oxidized, resulting in brown color formation, even in the absence of active oxidative enzymes. Browning of catechin-rich beverages, such as green tea, during their shelf life is undesired. The mechanisms of auto-oxidation of catechins and the brown products formed are still largely unknown. Therefore, we studied auto-oxidative browning of epicatechin (EC) and epigallocatechin (EGC) in model systems. Products of EC and EGC auto-oxidation were analyzed by reversed-phase ultra-high-performance liquid chromatography with photodiode array detection coupled to mass spectrometry (RP-UHPLC-PDA-MS). In the EC model system, 11 δ-type dehydrodicatechins (DhC2s) and 18 δ-type dehydrotricatechins (DhC3s) that were related to browning could be tentatively identified by their MS2 signature fragments. In the EGC model system, auto-oxidation led to the formation of 13 dihydro-indene-carboxylic acid derivatives and 2 theaflagallins that were related to browning. Based on the products formed, we propose mechanisms for the auto-oxidative browning of EC and EGC. Furthermore, our results indicate that dimers and oligomers that possess a combination of an extended conjugated system, fused rings, and carbonyl groups are responsible for the brown color formation in the absence of oxidative enzymes.Tartary buckwheat (Fagopyrum tataricum) is rich in flavonols, which are thought to be highly beneficial for human health. However, little is known about the regulatory mechanism of flavonol biosynthesis in Tartary buckwheat. In this study, we identified and characterized a novel SG7 R2R3-MYB transcription factor in Tartary buckwheat, FtMYB6. We showed that FtMYB6 is located in the nucleus and acts as a transcriptional activator. The FtMYB6 promoter showed strong spatiotemporal specificity and was induced by light. The expression of FtMYB6 showed a significant correlation with rutin accumulation in the roots, stems, leaves, and flowers. Overexpression of FtMYB6 in transgenic Tartary buckwheat hairy roots and tobacco (Nicotiana tabacum) plants significantly increased the accumulation of flavonols. In transient luciferase (LUC) activity assay, FtMYB6 promoted the activity of FtF3H and FtFLS1 promoters and inhibited the activity of the Ft4CL promoter. Collectively, our results suggest that FtMYB6 promotes flavonol biosynthesis by activating FtF3H and FtFLS1 expression.Dearomative functionalization of heteroaromatics, a readily available chemical feedstock, is one of the most straightforward approaches for the synthesis of three-dimensional, chiral heterocyclic systems, important synthetic building blocks for both synthetic chemistry and drug discovery. Despite significant efforts, direct nucleophilic additions to heteroaromatics have remained challenging because of the low reactivity of aromatic substrates associated with the loss of aromaticity, as well the regio- and stereoselectivities of the reaction. Here we present a catalytic system that leads to unprecedented, high-yielding dearomative C-4 functionalization of quinolines with organometallics with nearly absolute regio- and stereoselectivities and with a catalyst turnover number (TON) as high as 1000. The synergistic action of the chiral copper catalyst, Lewis acid, and Grignard reagents allows us to overcome the energetic barrier of the dearomatization process and leads to chiral products with selectivities reaching 99% in most cases. Molecular modeling provides important insights into the speciation and the origin of the regio- and enantioselectivity of the catalytic process. The results reveal that the role of the Lewis acid is not only to activate the substrate toward a potential nucleophilic addition but also to subtly control the regiochemistry by preventing the C-2 addition from happening.We introduce a new latent fingermark (LFM) development method, where compounds showing long lifetime luminescence are generated in situ by the reactions of Eu(TTA)3(H2O)2 with LFM components. Until now, time-gated imaging could not be used to develop LFM on porous surfaces due to the difficulties with selective binding of the developing agents to the fingermark ridges. The nature of the interactions of Eu(TTA)3(H2O)2 with the LFM material has been investigated for three model compounds commonly found in the LFM composition-oleic acid, l-serine, and squalene. The LFMs developed with the europium β-diketonate complex have been successfully photographed using a time-gated imaging scheme. The presented new approach has been demonstrated to give similar or better results than developing agents commonly used for paper samples (ninhydrin and 1,2-indanedione). Moreover, contrary to the methods mentioned above, the new approach allows for the development of amino acid-poor LFM on paper.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0