• Bray Mccray opublikował 1 rok, 3 miesiące temu

    Brazil’s Family Health Strategy (FHS) leads public health policies and actions regarding community health, addressing arterial hypertension (AH) in primary care settings. In this scenario, the use of communication technologies becomes appropriate for the monitoring of patients with AH. To preliminary verify the intervention approach and the effects of using an m-Health application on the health conditions of patients with AH for a future study, we conducted a non-randomized, controlled, non-blind trial (N = 39), comparing the use of a mobile health app (m-Health) with conventional AH monitoring over 3 months. During the study, we promoted health information workshops to engage patients from both intervention and control groups. Pre and post-intervention, we compared measurements of systolic and diastolic blood pressure; food frequency questionnaire; Appraisal of Self-Care Agency Scale; blood tests of hemogram, creatinine, uric acid, sodium, potassium, lipid profile, and glycemia. Improvements were identified in both groups due to the workshops, including the reduction in total and non-HDL cholesterol, healthier consumption of salads and sugary drinks, and increased self-care scores. Exclusively in the intervention group, which used the m-Health app, there was a change in systolic and diastolic pressure towards more adequate levels. In addition, the intervention group had improved levels of glucose and HDL cholesterol and reduced consumption of ultra-processed foods. In conclusion, the use of an m-Health app had positive effects on the health conditions of patients with AH under treatment within FHS, especially when combined with health information. On the context of FHS, the use of technology is encouraging supporting better health conditions.Despite clinical and research interest in the health implications of the conjugation of linoleic acid (LA) by bifidobacteria, the detailed metabolic pathway and physiological reasons underlying the process remain unclear. This research aimed to investigate, at the molecular level, how LA affects the metabolism of Bifidobacterium breve DSM 20213 as a model for the well-known LA conjugation phenotype of this species. The mechanisms involved and the meaning of the metabolic changes caused by LA to B. breve DSM 20213 are unclear due to the lack of comprehensive information regarding the responses of B. breve DSM 20213 under different environmental conditions. Therefore, for the first time, an untargeted metabolomics-based approach was used to depict the main changes in the metabolic profiles of B. breve DSM 20213. Both supervised and unsupervised statistical methods applied to the untargeted metabolomic data allowed confirming the metabolic changes of B. breve DSM 20213 when exposed to LA. In particular, alterations to the amino-acid, carbohydrate and fatty-acid biosynthetic pathways were observed at the stationary phase of growth curve. Among others, significant up-regulation trends were detected for aromatic (such as tyrosine and tryptophan) and sulfur amino acids (i.e., methionine and cysteine). Besides confirming the conjugation of LA, metabolomics suggested a metabolic reprogramming during the whole growth curve and an imbalance in redox status following LA exposure. Such redox stress resulted in the down-accumulation of peroxide scavengers such as low-molecular-weight thiols (glutathione- and mycothiol-related compounds) and ascorbate precursors, together with the up-accumulation of oxidized (hydroxy- and epoxy-derivatives) forms of fatty acids. Consistently, growth was reduced and the levels of the oxidative stress marker malondialdehyde were higher in LA-exposed B. breve DSM 20213 than in the control.Three-dimensional (3D) reconstruction of capsule endoscopic images has been attempted for a long time to obtain more information on small bowel structures. Due to the limited hardware resources of capsule size and battery capacity, software approaches have been studied but have mainly exhibited inherent limitations. Recently, stereo camera-based capsule endoscopy, which can perform hardware-enabled 3D reconstruction, has been developed. We aimed to evaluate the feasibility of newly developed 3D capsule endoscopy in clinical practice. This study was a prospective, single-arm, feasibility study conducted at two university-affiliated hospitals in South Korea. Small bowel evaluation was performed using a newly developed 3D capsule endoscope for patients with obscure gastrointestinal bleeding, suspected or established Crohn’s disease, small bowel tumors, and abdominal pain of unknown origin. We assessed the technical limitations, performance, and safety of the new capsule endoscope. Thirty-one patients (20 men and 11 women; mean age 44.5 years) were enrolled. There was no technical defect preventing adequate visualization of the small bowel. The overall completion rate was 77.4%, the detection rate was 64.5%, and there was no capsule retention. All capsule endoscopic procedures were completed uneventfully. In conclusion, newly developed 3D capsule endoscopy was safe and feasible, showing similar performance as conventional capsule endoscopy. Newly added features of 3D reconstruction and size measurement are expected to be useful in the characterization of subepithelial tumours.Staphylococcus aureus or methicillin-resistant Staphylococcus aureus (MRSA) is an important issue associated with significant morbidity and mortality and well known as a predominant pathogen causing bloodstream infection (BSIs) globally. To estimate the antibiotic resistance and molecular characteristics of S. aureus causing BSIs in Shanghai, 120 S. aureus isolates (20 isolates each year) from the patients with S. aureus BSIs from 2013 to 2018 were randomly selected and enrolled in this study. Fifty-three (44.2%) MRSA isolates were determined, and no isolate was found resistant to vancomycin, daptomycin, synercid, linezolid and ceftaroline. The toxin genes tst, sec, seg and sei were found more frequently among MRSA isolates compared with MSSA isolates (all P  less then  0.0001). Twenty-nine sequence types (STs) were identified, and ST5 (23.3%) was the most common ST, followed by ST398 (11.7%) and ST764 (10.0%). SCCmec II (73.6%) was the most frequent SCCmec type among MRSA isolates. The dominant clonal complexes (CCs) were CC5 (ST5, ST764, ST965 and ST3066; 36.7%) and the livestock-associated clone CC398 (ST398, 11.7%). MRSA-CC5 was the predominant CC among MRSA isolates (37/53, 69.8%), and CC5-II MRSA was found in 34 isolates accounting for 91.9% (34/37) among CC5 MRSA isolates. In addition, all 29 tst-positive MRSA isolates were CC5-MRSA as well. Our study provided the properties and genotypes of S. aureus causing BSIs at Ruijin Hospital in Shanghai from 2013 to 2018, and might suggest of value clues for the further study insights into pathogenic mechanisms intrinsically referring to the development of human-adapted S. aureus clones and their diffusions.Optogenetic methods for switching molecular states in cells are increasingly prominent tools in life sciences. Förster Resonance Energy Transfer (FRET)-based sensors can provide quantitative and sensitive readouts of altered cellular biochemistry, e.g. from optogenetics. However, most of the light-inducible domains respond to the same wavelength as is required for excitation of popular CFP/YFP-based FRET pairs, rendering the techniques incompatible with each other. In order to overcome this limitation, we red-shifted an existing CFP/YFP-based OP18 FRET sensor (COPY) by employing an sYFP2 donor and mScarlet-I acceptor. Their favorable quantum yield and brightness result in a red-shifted FRET pair with an optimized dynamic range, which could be further enhanced by an R125I point mutation that stimulates intramolecular interactions. The new sensor was named ROPY and it visualizes the interaction between the microtubule regulator stathmin/OP18 and free tubulin heterodimers. We show that through phosphorylation of the ROPY sensor, its tubulin sequestering ability can be locally regulated by photo-activatable Rac1 (PARac1), independent of the FRET readout. Together, ROPY and PARac1 provide spatiotemporal control over free tubulin levels. ROPY/PARac1-based optogenetic regulation of free tubulin levels allowed us to demonstrate that depletion of free tubulin prevents the formation of pioneer microtubules, while local upregulation of tubulin concentration allows localized microtubule extensions to support the lamellipodia.Different mutations of the OTOF gene, encoding for otoferlin protein expressed in the cochlear inner hair cells, induces a form of deafness that is the major cause of nonsyndromic recessive auditory neuropathy spectrum disorder in humans. We report the generation of the first large animal model of OTOF mutations using the CRISPR system associated with different Cas9 components (mRNA or protein) assisted by single strand oligodeoxynucleotides (ssODN) to induce homology-directed repair (HDR). Zygote microinjection was performed with two sgRNA targeting exon 5 and 6 associated to Cas9 mRNA or protein (RNP) at different concentrations in a mix with an ssODN template targeting HDR in exon 5 containing two STOP sequences. A total of 73 lambs were born, 13 showing indel mutations (17.8%), 8 of which (61.5%) had knock-in mutations by HDR. Higher concentrations of Cas9-RNP induced targeted mutations more effectively, but negatively affected embryo survival and pregnancy rate. This study reports by the first time the generation of OTOF disrupted sheep, which may allow better understanding and development of new therapies for human deafness related to genetic disorders. These results support the use of CRISPR/Cas system assisted by ssODN as an effective tool for gene editing in livestock.Refracture of cemented vertebrae occurs commonly after vertebroplasty (VP) for osteoporotic vertebral compression fracture (OVCF). It can result in severe pain or neurological deficit, but no preventive medication is available. Owing to the bone anabolic benefits of teriparatide (TP), this study was aimed to compare the outcomes of cemented vertebrae with TP to those without TP. Patients who received VP for OVCF with at least 1 year follow-up were included. The anterior body height (ABH) and middle body height (MBH) and kyphotic angle (KA) were measured before VP and 1 week and at least 1 year after VP. Refracture was defined as a 15% decrease in ABH or MBH and 8° decrease in KA compared with those at postoperative 1 week. The clinical outcomes were evaluated. 35 VP procedures in 21 patients treated with TP (TP group), and, matched to that, 29 out of 133 patients treated with VP alone (VP group) were included. One year after VP, ABH and MBH were significantly greater, except KA, in the TP group (VP group vs. TP group KA - 4.97° ± 12.1 vs. -2.85° ± 12.21°, p = 0.462, ABH 1.56 ± 0.48 cm vs. 1.84 ± 0.56 cm, p = 0.027, MBH 1.49 ± 0.39 cm vs. 1.73 ± 0.41 cm, p = 0.017). The refracture rates of KA, ABH, and MBH were significantly lower in the TP group (VP group vs. TP group KA 42.11% vs.8.57%, p  less then  0.001; ABH 76.32% vs. 28.57%, p  less then  0.0001; MBH 76.32% vs. 28.57%, p  less then  0.0001). In single-level subgroup comparison, TP was associated with better improvement of pain VAS and better radiological outcomes. TP was associated with higher BHs and fewer refractures than VP alone, with comparable clinical outcomes 1 year after VP. TP may be associated with better improvement of pain VAS in those with single-level VP procedure. Higher BH was due to the better maintenance effect of TP.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0