-
Espinoza Slaughter opublikował 5 miesięcy, 1 tydzień temu
The impact on bacterial killing varies between individual adapted microbiological media, as well as direct pharmacodynamic simulations in body fluids, between bacterial strains, antimicrobial agents, and the compositions of the adjuvants or the biological fluid itself.The use of human gesturing to interact with devices such as computers or smartphones has presented several problems. This form of interaction relies on gesture interaction technology such as Leap Motion from Leap Motion, Inc, which enables humans to use hand gestures to interact with a computer. The technology has excellent hand detection performance, and even allows simple games to be played using gestures. Another example is the contactless use of a smartphone to take a photograph by simply folding and opening the palm. Research on interaction with other devices via hand gestures is in progress. Similarly, studies on the creation of a hologram display from objects that actually exist are also underway. We propose a hand gesture recognition system that can control the Tabletop holographic display based on an actual object. The depth image obtained using the latest Time-of-Flight based depth camera Azure Kinect is used to obtain information about the hand and hand joints by using the deep-learning model CrossInfoNet. Using this information, we developed a real time system that defines and recognizes gestures indicating left, right, up, and down basic rotation, and zoom in, zoom out, and continuous rotation to the left and right.Consistent with a role in catalyzing rate-limiting step of protein folding, removal of genes encoding cytoplasmic protein folding catalysts belonging to the family of peptidyl-prolyl cis/trans isomerases (PPIs) in Escherichia coli confers conditional lethality. To address the molecular basis of the essentiality of PPIs, a multicopy suppressor approach revealed that overexpression of genes encoding chaperones (DnaK/J and GroL/S), transcriptional factors (DksA and SrrA), replication proteins Hda/DiaA, asparatokinase MetL, Cmk and acid resistance regulator (AriR) overcome some defects of Δ6ppi strains. Interestingly, viability of Δ6ppi bacteria requires the presence of transcriptional factors DksA, SrrA, Cmk or Hda. DksA, MetL and Cmk are for the first time shown to exhibit PPIase activity in chymotrypsin-coupled and RNase T1 refolding assays and their overexpression also restores growth of a Δ(dnaK/J/tig) strain, revealing their mechanism of suppression. Mutagenesis of DksA identified that D74, F82 and L84 amino acid residues are critical for its PPIase activity and their replacement abrogated multicopy suppression ability. Mutational studies revealed that DksA-mediated suppression of either Δ6ppi or ΔdnaK/J is abolished if GroL/S and RpoE are limiting, or in the absence of either major porin regulatory sensory kinase EnvZ or RNase H, transporter TatC or LepA GTPase or Pi-signaling regulator PhoU.Microsurgical abdominally-based reconstruction is considered the gold standard in autologous breast reconstruction. Despite refined surgical procedures, donor-site complications still occur, reducing patient satisfaction and quality of life. Recent work has outlined the potential of morphometric measurements in risk assessment for postoperative hernia development. With rising demand for personalised treatment, the goal of this study was to investigate their potential in risk assessment for any donor site complication. In this retrospective cohort study, 90 patients were included who each received microsurgical breast reconstruction at the hands of one surgeon between January 2015 and May 2017. Donor-site complications formed the primary outcome and were classified according to Clavien-Dindo. Morphometric measurements were taken on a routinely performed computed tomographic angiogram. Complications occurred in 13 of the 90 (14.4%) cases studied. All patients who developed any type of postoperative donor site complication had a history of abdominal surgery. The risk of postoperative complications increased by 3% with every square centimetre of omental fat tissue (OR 1.03, 95% CI 1.00-1.06, and p-value = 0.022). Morphometric measurements provide valuable information in risk assessment for donor-site complications in abdominally-based breast reconstruction. They may help identify personalised reconstructive options for maximal postoperative patient satisfaction and quality of life.In an aeroengine casing containment experiment, in order to explode and separate unidirectional carbon fiber reinforced epoxy resin-based laminate, with uneven thickness, without excessive residual speed and fragment spattering, blades were subjected to three types of blasting and cutting pretests, including normal and lateral opening charge explosive tests on the laminate and linear charge-shaped jet cutting. The linear charge-shaped method was found to be the most suitable method for separating the laminate. The finite-element analysis program AUTODYN was used to simulate and optimize the effect of shaped jet cutting. When the explosive height of the shaped jet cutter was set to 90 mm, the laminate broke with the least number of fragments and the residual velocity of the plate was the smallest. At this time, we obtained the relationship between the total amount of explosive and the thickness of the composite plate when the composite plates of different thicknesses were just broken, and the rationality of the relationship was verified by experiments. The research method, in this paper, provides a reference scheme to design explosive separation composite materials in complex engineering environments.Y-box binding protein-1 (YB-1) is a multifunctional oncoprotein that has been shown to regulate proliferation, invasion and metastasis in a variety of cancer types. We previously demonstrated that YB-1 is overexpressed in mesothelioma cells and its knockdown significantly reduces tumour cell proliferation, migration, and invasion. However, the mechanisms driving these effects are unclear. Here, we utilised an unbiased RNA-seq approach to characterise the changes to gene expression caused by loss of YB-1 knockdown in three mesothelioma cell lines (MSTO-211H, VMC23 and REN cells). Bioinformatic analysis showed that YB-1 knockdown regulated 150 common genes that were enriched for regulators of mitosis, integrins and extracellular matrix organisation. However, each cell line also displayed unique gene expression signatures, that were differentially enriched for cell death or cell cycle control. Interestingly, deregulation of STAT3 and p53-pathways were a key differential between each cell line. Using flow cytometry, apoptosis assays and single-cell time-lapse imaging, we confirmed that MSTO-211H, VMC23 and REN cells underwent either increased cell death, G1 arrest or aberrant mitotic division, respectively. In conclusion, this data indicates that YB-1 knockdown affects a core set of genes in mesothelioma cells. Loss of YB-1 causes a cascade of events that leads to reduced mesothelioma proliferation, dependent on the underlying functionality of the STAT3/p53-pathways and the genetic landscape of the cell.The efficiency of acid treatment on natural calcium bentonite (natural bentonite) for anionic dye adsorption was investigated using methyl orange (MO) as a probe. Additionally, adsorption experiments were accomplished between the natural bentonite, acidified bentonite, and a cationic dye (methylene blue, MB). Acid functionalization in natural bentonite (RF) was carried out with HCl and H2SO4 acids (RF1 and RF2, respectively). The samples were characterized by chemical analysis, mineralogy, particle size, and thermal behavior with the associated mass losses. The adsorption efficiency of MO and MB dyes was investigated by the effects of the initial concentration of adsorbate (Ci) and the contact time (tc). The acid treatment was efficient for increasing the adsorption capacity of the anionic dye, and the Qmaxexp values measured were 2.2 mg/g, 67.4 mg/g e 47.8 mg/g to RF, RF1 e RF2, respectively. On the other hand, the acid functionalization of bentonite did not significantly modify the MB dye adsorption. The Sips equation was the best fit for the adsorption isotherms. Thus, we found that the acid-functionalized bentonite increases the anionic dye adsorption by up to 8000%. The increased adsorptive capacity of acidified bentonite was explained in terms of electrostatic attraction between the clay surface and the dye molecule.Asbestos-containing pottery shards collected in the northeast of Corsica (Cap Corse) and dating from the 19th century, or earlier, have been analyzed by SEM-EDS, XRPD, FTIR and Raman microspectroscopy. Blue (crocidolite) and white (chrysotile) asbestos fiber bundles are observed in cross-sections. Most of the asbestos is partly or totally dehydroxylated, and some transformation to forsterite is observed to occur, indicative of a firing above 800 °C. Examination of freshly fractured pieces shows a nonbrittle fracture with fiber pull-out, consistent with a composite material behavior, which makes these ceramics the oldest fiber-reinforced ceramic matrix composite. Residues indicate the use of this pottery as a crucible for gold extraction using cyanide.The last series of Raven’s standard progressive matrices (SPM-LS) test was studied with respect to its psychometric properties in a series of recent papers. In this paper, the SPM-LS dataset is analyzed with regularized latent class models (RLCMs). For dichotomous item response data, an alternative estimation approach based on fused regularization for RLCMs is proposed. For polytomous item responses, different alternative fused regularization penalties are presented. The usefulness of the proposed methods is demonstrated in a simulated data illustration and for the SPM-LS dataset. For the SPM-LS dataset, it turned out the regularized latent class model resulted in five partially ordered latent classes. In total, three out of five latent classes are ordered for all items. For the remaining two classes, violations for two and three items were found, respectively, which can be interpreted as a kind of latent differential item functioning.The aim of this work was to study the buckling behavior and failure mode of the double-sided laser-welded Al-Li alloy panel structure under the effect of axial compression via experimental and numerical simulation methods. In the test, multi-frequency fringe projection profilometry was used to monitor the out-of-plane displacement of the laser-welded panel structure during the axial compression load. In addition, the in-plane deformation was precisely monitored via strain gauge and strain rosette. The basic principles of fringe projection profilometry were introduced, and how to use fringe projection profilometry to obtain out-of-plane displacement was also presented. Numerical simulations were performed using the finite element method (FEM) to predict the failure load and buckling modes of the laser-welded panel structure under axial compression, and the obtained results were compared with those of the experiment. It was found that the fringe projection profilometry method for monitoring the buckling deformation of the laser-welded structure was verified to be effective in terms of a measurement accuracy of sub-millimeter level.