• Fitzsimmons Henningsen opublikował 5 miesięcy, 2 tygodnie temu

    Early risk stratification of acutely poisoned patients is essential to identify patients at high risk of intensive care unit (ICU) admission. We aimed to develop a prognostic model and risk-stratification nomogram based on the readily accessible clinical and laboratory predictors on admission for the probability of ICU admission in acutely poisoned patients. This retrospective cohort study included adult patients with acute toxic exposure to a drug or a chemical substance. Patients’ demographic, toxicologic, clinical and laboratory data were collected. Among the 1260 eligible patients, 180 (14.3%) were admitted to the ICU. We developed a generalized prognostic model for predicting ICU admission in patients with acute poisoning. The predictors included the Glasgow coma scale, oxygen saturation, diastolic blood pressure, respiratory rate and blood bicarbonate concentration. The model displayed excellent discrimination and calibration (optimistic-adjusted area under the curve = 0.924 and optimistic-adjusted Hosmer and Lemeshow test = 0.922, respectively) when internally validated. Additionally, we developed prognostic models that determine ICU admission in patients with specific poisonings. Furthermore, we constructed risk-stratification nomograms that rank the probability of ICU admission in these patients. The developed risk-stratification nomograms help decision-making regarding ICU admission in acute poisonings. Future external validation in independent cohorts is necessary before clinical application.Despite the previous evidence showing that SHC adaptor protein 1 (SHC1) could encode three distinct isoforms (p46SHC, p52SHC and p66SHC) that function in different activities such as regulating life span and Ras activation, the precise underlying role of SHC1 in lung cancer also remains obscure. In this study, we firstly found that SHC1 expression was up-regulated both in lung adenocarcinoma (LUAD) and in lung squamous cell carcinoma (LUSC) tissues. Furthermore, compared to patients with lower SHC1 expression, LUAD patients with higher expression of SHC1 had poorer overall survival (OS). Moreover, higher expression of SHC1 was also associated with worse OS in patients with stages 1 and 2 but not stage 3 lung cancer. Significantly, the analysis showed that SHC1 methylation level was associated with OS in lung cancer patients. It seemed that the methylation level at specific probes within SHC1 showed negative correlations with SHC1 expression both in LUAD and in LUSC tissues. The LUAD and LUSC patients with hypermethylated SHC1 at cg12473916 and cg19356022 probes had a longer OS. Therefore, it is reasonable to conclude that SHC1 has a potential clinical significance in LUAD and LUSC patients.Ecdysone-induced protein 93F (E93) plays important roles during the metamorphosis process in insects. In this study, a cDNA of the LmE93 gene was identified from the transcriptome of Locusta migratoria, which consists of the 3378-nucleotide open-reading frame (ORF) and encodes 1125 amino acids with helix-turn-helix (HTH) motifs. Reverse transcription quantitative polymerase chain reaction analysis revealed that LmE93 was highest expressed in ovary. The LmE93 expression level was markedly low from the 3rd to 4th instar nymphs, and greatly increased in 1-day-old 5th instar nymphs with a peak on middle nymphal days, then declined in the late nymphal days. Moreover, injected dsLmE93 into 4th and 5th instar nymphs greatly reduced LmE93 transcripts, respectively, and prevented the process of metamorphosis, causing supernumerary nymphal stages. Hematoxylin-eosin staining of the integument showed that the apolysis occurred in advance in 4th instar nymphs, and old cuticle degradation was decreased in dsLmE93-injected locusts of 5th instar nymphs. Smaller and no fully developed wings with reduced columns between the anterior and posterior regions were found in N6 and N7 supernumerary nymphs. In addition, the development of the ovary in dsLmE93-injected locusts was severely blocked, the yolk was almost not formed and there was no development of ovarioles. The results indicated that LmE93 play key roles in the metamorphosis, cuticle, wing and ovarian development of locusts.Oral anticancer drugs suffer from significant variability in pharmacokinetics and pharmacodynamics partially due to limited bioavailability. The limited bioavailability of anticancer drugs is due to both pharmaceutical limitations and physiological barriers. Pharmacokinetic boosting is a strategy to enhance the oral bioavailability of a therapeutic drug by inhibiting physiological barriers through an intentional drug-drug interaction (DDI). This type of strategy has proven effective across several therapeutic indications including anticancer treatment. Pharmacokinetic boosting could improve anticancer drugs lacking or with otherwise unacceptable oral formulations through logistic, economic, pharmacodynamic and pharmacokinetic benefits. Despite these benefits, pharmacokinetic boosting strategies could result in unintended DDIs and are only likely to benefit a limited number of targets. Highlighting this concern, pharmacokinetic boosting has mixed results depending on the boosted drug. While pharmacokinetic boosting did not significantly improve certain drugs, it has resulted in the commercial approval of boosted oral formulations for other drugs. Pharmacokinetic boosting to improve oral anticancer therapy is an expanding area of research that is likely to improve treatment options for cancer patients.Ionic chiral selectors have been received much attention in the field of asymmetric catalysis, chiral recognition, and preparative separation. It has been shown that the addition of ionic chiral selectors can enhance the recognition efficiency dramatically due to the presence of multiple intermolecular interactions, including hydrogen bond, π-π interaction, van der Waals force, electrostatic ion-pairing interaction, and ionic-hydrogen bond. In the initial research stage of the ionic chiral selectors, most of work center on the application in chromatographic separation (capillary electrophoresis, high-performance liquid chromatography, and gas chromatography). Differently, more and more attention has been paid on the spectroscopy (nuclear magnetic resonance, fluorescence, ultraviolet and visible absorption spectrum, and circular dichroism spectrum) and electrochemistry in recent years. In this tutorial review as regards the ionic chiral selectors, we discuss in detail the structural features, properties, and their application in chromatography, spectroscopy, and electrochemistry.Anodic olefin coupling reactions generate new bonds and ring skeletons through a net two electron process that reverses the polarity of a known, electron-rich functional group. While much of the early work on the mechanism of these reactions focused on the initial oxidation and cyclization steps of the process, the second oxidation step also plays a central role in determining the success of the reaction. Evidence supporting this observation is presented, along with evidence that optimization of this second oxidation step is not enough to pull a poor cyclization to the desired product. Successful cyclization reactions require optimization of both processes.Macrophage polarization is of great importance in the formation of atherosclerotic plaque. Homeobox A5 (HOXA5), one of the homeobox transcription factors, has been revealed to be closely associated with macrophage phenotype switching. This study aims to investigate the role of HOXA5 in carotid atherosclerosis (CAS). Herein, the role of HOXA5 was explored in polarized RAW264.7 macrophages in vitro and ApoE-/- mice in vivo. Interestingly, compared with that in M0 macrophages, both the mRNA and protein expression levels of HOXA5 were decreased in lipopolysaccharide (LPS)/interferon (IFN)-γ-induced M1 macrophages, while increased in IL-4-induced M2 macrophages. In addition, in the presence of IL-4, HOXA5-overexpressing RAW264.7 cells preferred to polarizing toward M2 phenotypes. Furthermore, we found that HOXA5 bound to the promoter region and activated the expression of mediator subunit 1 (MED1), a gene known to regulate macrophage differentiation. Knocking MED1 down inhibited HOXA5-enhanced M2 macrophage polarization. In vivo, the CAS model was induced in ApoE-/- mouse fed with a Western-type diet and placed a perivascular carotid collar. Decreased mRNA and protein expressions of HOXA5 were observed in carotid arteries of CAS mice. Forced overexpression of HOXA5 reduced intimal hyperplasia and lipid accumulation in carotid vessels, and it also promoted the polarization of macrophages to M2 subtypes. The expression of MED1 was decreased in atherosclerotic carotid vessels, while HOXA5 overexpression restored its change. Collectively, HOXA5 in carotid arteries is involved in the macrophage M1/M2 switching in atherosclerotic plaque, which may be associated with its transcriptional regulation of MED1.

    We conducted six cross-sectional nationwide questionnaire studies among all patients with hemophilia in the Netherlands from 1972 until 2019 to assess how health outcomes have changed, with a special focus on patients >50years of age.

    Data were collected on patient characteristics, treatment, (joint) bleeding, joint impairment, hospitalizations, human immunodeficiency virus and hepatitis C infections, and general health status (RAND-36).

    In 2019, 1009 patients participated, of whom 48% had mild, 15% moderate, and 37% severe hemophilia. From 1972 to 2019, the use of prophylaxis among patients with severe hemophilia increased from 30% to 89%. Their median annual bleeding rate decreased from 25 to 2 bleeds. Patients with severe hemophilia aged <16years reported joint impairment less often over time, but in those aged >40years joint status did not improve. In 2019, 5% of all 1009 patients were positive for the human immunodeficiency virus. The proportion of patients with an active hepatitis C infection drastically decreased from 45% in 2001 to 2% in 2019 due to new anti-hepatitis C treatment options. Twenty-five percent had significant liver fibrosis even after successful therapy. Compared to the general male population, patients aged >50years reported much lower scores on the RAND-36, especially on physical functioning.

    Our study shows that increased use of prophylactic treatment and effective hepatitis C treatment have improved joint health and nearly eradicated hepatitis C infection in patients with hemophilia in the Netherlands. However, patients still suffer from hemophilia-related complications, especially patients aged >50years.

    50 years.Atherosclerosis, in the ultimate stage of cardiovascular diseases, causes an obstruction of vessels leading to ischemia and finally to necrosis. To restore vascularization and tissue regeneration, stimulation of angiogenesis is necessary. Chemokines and microRNAs (miR) were studied as pro-angiogenic agents. We analysed the miR-126/CXCL12 axis and compared impacts of both miR-126-3p and miR-126-5p strands effects in CXCL12-induced angiogenesis. Indeed, the two strands of miR-126 were previously shown to be active but were never compared together in the same experimental conditions regarding their differential functions in angiogenesis. In this study, we analysed the 2D-angiogenesis and the migration assays in HUVEC in vitro and in rat’s aortic rings ex vivo, both transfected with premiR-126-3p/-5p or antimiR-126-3p/-5p strands and stimulated with CXCL12. First, we showed that CXCL12 had pro-angiogenic effects in vitro and ex vivo associated with overexpression of miR-126-3p in HUVEC and rat’s aortas. Second, we showed that 2D-angiogenesis and migration induced by CXCL12 was abolished in vitro and ex vivo after miR-126-3p inhibition.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0