• Sinclair Petterson opublikował 1 rok, 3 miesiące temu

    The DBTpred package is implemented in Python and freely available at https//github.com/fpy94/DBT.

    Supplementary data are available at Bioinformatics online.

    Supplementary data are available at Bioinformatics online.

    CRISPR/Cas9 is a revolutionary gene-editing technology that has been widely utilized in biology, biotechnology and medicine. CRISPR/Cas9 editing outcomes depend on local DNA sequences at the target site and are thus predictable. However, existing prediction methods are dependent on both feature and model engineering, which restricts their performance to existing knowledge about CRISPR/Cas9 editing.

    Herein, deep multi-task convolutional neural networks (CNNs) and neural architecture search (NAS) were used to automate both feature and model engineering and create an end-to-end deep-learning framework, CROTON (CRISPR Outcomes Through cONvolutional neural networks). The CROTON model architecture was tuned automatically with NAS on a synthetic large-scale construct-based dataset and then tested on an independent primary T cell genomic editing dataset. CROTON outperformed existing expert-designed models and non-NAS CNNs in predicting 1 base pair insertion and deletion probability as well as deletion and frameshift frequency. Interpretation of CROTON revealed local sequence determinants for diverse editing outcomes. Finally, CROTON was utilized to assess how single nucleotide variants (SNVs) affect the genome editing outcomes of four clinically relevant target genes the viral receptors ACE2 and CCR5 and the immune checkpoint inhibitors CTLA4 and PDCD1. Large SNV-induced differences in CROTON predictions in these target genes suggest that SNVs should be taken into consideration when designing widely applicable gRNAs.

    https//github.com/vli31/CROTON.

    Supplementary data are available at Bioinformatics online.

    Supplementary data are available at Bioinformatics online.

    High-throughput chromatin immunoprecipitation (ChIP) sequencing-based assays capture genomic regions associated with the profiled transcription factor (TF). ChIP-exo is a modified protocol, which uses lambda exonuclease to digest DNA close to the TF-DNA complex, in order to improve on the positional resolution of the TF-DNA contact. Because the digestion occurs in the 5′-3′ orientation, the protocol produces directional footprints close to the complex, on both sides of the double stranded DNA. Like all ChIP-based methods, ChIP-exo reports a mixture of different regions associated with the TF those bound directly to the TF as well as via intermediaries. However, the distribution of footprints are likely to be indicative of the complex forming at the DNA.

    We present ExoDiversity, which uses a model-based framework to learn a joint distribution over footprints and motifs, thus resolving the mixture of ChIP-exo footprints into diverse binding modes. It uses no prior motif or TF information and automatically learns the number of different modes from the data. We show its application on a wide range of TFs and organisms/cell-types. Because its goal is to explain the complete set of reported regions, it is able to identify co-factor TF motifs that appear in a small fraction of the dataset. Further, ExoDiversity discovers small nucleotide variations within and outside canonical motifs, which co-occur with variations in footprints, suggesting that the TF-DNA structural configuration at those regions is likely to be different. Finally, we show that detected modes have specific DNA shape features and conservation signals, giving insights into the structure and function of the putative TF-DNA complexes.

    The code for ExoDiversity is available on https//github.com/NarlikarLab/exoDIVERSITY.

    Supplementary data are available at Bioinformatics online.

    Supplementary data are available at Bioinformatics online.

    Personalized medicine aims at providing patient-tailored therapeutics based on multi-type data toward improved treatment outcomes. Chronotherapy that consists in adapting drug administration to the patient’s circadian rhythms may be improved by such approach. Recent clinical studies demonstrated large variability in patients’ circadian coordination and optimal drug timing. Consequently, new eHealth platforms allow the monitoring of circadian biomarkers in individual patients through wearable technologies (rest-activity, body temperature), blood or salivary samples (melatonin, cortisol) and daily questionnaires (food intake, symptoms). A current clinical challenge involves designing a methodology predicting from circadian biomarkers the patient peripheral circadian clocks and associated optimal drug timing. The mammalian circadian timing system being largely conserved between mouse and humans yet with phase opposition, the study was developed using available mouse datasets.

    We investigated at the molecular scale the influence of systemic regulators (e.g. temperature, hormones) on peripheral clocks, through a model learning approach involving systems biology models based on ordinary differential equations. Using as prior knowledge our existing circadian clock model, we derived an approximation for the action of systemic regulators on the expression of three core-clock genes Bmal1, Per2 and Rev-Erbα. These time profiles were then fitted with a population of models, based on linear regression. Best models involved a modulation of either Bmal1 or Per2 transcription most likely by temperature or nutrient exposure cycles. This agreed with biological knowledge on temperature-dependent control of Per2 transcription. The strengths of systemic regulations were found to be significantly different according to mouse sex and genetic background.

    https//gitlab.inria.fr/julmarti/model-learning-mb21eccb.

    Supplementary data are available at Bioinformatics online.

    Supplementary data are available at Bioinformatics online.

    Minimizers are efficient methods to sample k-mers from genomic sequences that unconditionally preserve sufficiently long matches between sequences. Well-established methods to construct efficient minimizers focus on sampling fewer k-mers on a random sequence and use universal hitting sets (sets of k-mers that appear frequently enough) to upper bound the sketch size. In contrast, the problem of sequence-specific minimizers, which is to construct efficient minimizers to sample fewer k-mers on a specific sequence such as the reference genome, is less studied. Currently, the theoretical understanding of this problem is lacking, and existing methods do not specialize well to sketch specific sequences.

    We propose the concept of polar sets, complementary to the existing idea of universal hitting sets. Polar sets are k-mer sets that are spread out enough on the reference, and provably specialize well to specific sequences. Link energy measures how well spread out a polar set is, and with it, the sketch size can be bounded from above and below in a theoretically sound way. This allows for direct optimization of sketch size. We propose efficient heuristics to construct polar sets, and via experiments on the human reference genome, show their practical superiority in designing efficient sequence-specific minimizers.

    A reference implementation and code for analyses under an open-source license are at https//github.com/kingsford-group/polarset.

    Supplementary data are available at Bioinformatics online.

    Supplementary data are available at Bioinformatics online.

    Despite numerous RNA-seq samples available at large databases, most RNA-seq analysis tools are evaluated on a limited number of RNA-seq samples. This drives a need for methods to select a representative subset from all available RNA-seq samples to facilitate comprehensive, unbiased evaluation of bioinformatics tools. In sequence-based approaches for representative set selection (e.g. a k-mer counting approach that selects a subset based on k-mer similarities between RNA-seq samples), because of the large numbers of available RNA-seq samples and of k-mers/sequences in each sample, computing the full similarity matrix using k-mers/sequences for the entire set of RNA-seq samples in a large database (e.g. the SRA) has memory and runtime challenges; this makes direct representative set selection infeasible with limited computing resources.

    We developed a novel computational method called 'hierarchical representative set selection’ to handle this challenge. Hierarchical representative set selection is a divide-ilable at Bioinformatics online.

    Automated function prediction (AFP) of proteins is a large-scale multi-label classification problem. Two limitations of most network-based methods for AFP are (i) a single model must be trained for each species and (ii) protein sequence information is totally ignored. These limitations cause weaker performance than sequence-based methods. Thus, the challenge is how to develop a powerful network-based method for AFP to overcome these limitations.

    We propose DeepGraphGO, an end-to-end, multispecies graph neural network-based method for AFP, which makes the most of both protein sequence and high-order protein network information. Our multispecies strategy allows one single model to be trained for all species, indicating a larger number of training samples than existing methods. Extensive experiments with a large-scale dataset show that DeepGraphGO outperforms a number of competing state-of-the-art methods significantly, including DeepGOPlus and three representative network-based methods GeneMANIA, deepNF and clusDCA. We further confirm the effectiveness of our multispecies strategy and the advantage of DeepGraphGO over so-called difficult proteins. Finally, we integrate DeepGraphGO into the state-of-the-art ensemble method, NetGO, as a component and achieve a further performance improvement.

    https//github.com/yourh/DeepGraphGO.

    Supplementary data are available at Bioinformatics online.

    Supplementary data are available at Bioinformatics online.

    Single-cell RNA sequencing (scRNA-seq) captures whole transcriptome information of individual cells. While scRNA-seq measures thousands of genes, researchers are often interested in only dozens to hundreds of genes for a closer study. Then, a question is how to select those informative genes from scRNA-seq data. Moreover, single-cell targeted gene profiling technologies are gaining popularity for their low costs, high sensitivity and extra (e.g. spatial) information; however, they typically can only measure up to a few hundred genes. Then another challenging question is how to select genes for targeted gene profiling based on existing scRNA-seq data.

    Here, we develop the single-cell Projective Non-negative Matrix Factorization (scPNMF) method to select informative genes from scRNA-seq data in an unsupervised way. Compared with existing gene selection methods, scPNMF has two advantages. First, its selected informative genes can better distinguish cell types. Second, it enables the alignment of new targeted gene profiling data with reference data in a low-dimensional space to facilitate the prediction of cell types in the new data. Technically, scPNMF modifies the PNMF algorithm for gene selection by changing the initialization and adding a basis selection step, which selects informative bases to distinguish cell types. We demonstrate that scPNMF outperforms the state-of-the-art gene selection methods on diverse scRNA-seq datasets. Moreover, we show that scPNMF can guide the design of targeted gene profiling experiments and the cell-type annotation on targeted gene profiling data.

    The R package is open-access and available at https//github.com/JSB-UCLA/scPNMF. The data used in this work are available at Zenodo https//doi.org/10.5281/zenodo.4797997.

    Supplementary data are available at Bioinformatics online.

    Supplementary data are available at Bioinformatics online.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0