-
Frederick Lowe opublikował 5 miesięcy, 1 tydzień temu
eter of the solid portion may allow better differentiation between SBOTs and SMOTs.BACKGROUND Rhabdomyolysis is a skeletal muscle injury that has different etiologies and can be a manifestation of coronavirus disease 2019 (COVID-19). Because it is a life-threatening condition, rapid diagnosis is necessary to prevent acute complications. Diagnostic criteria for rhabdomyolysis are elevated serum creatine kinase, liver enzyme levels, and myalgia. Rhabdomyolysis can easily be missed in patients with COVID-19. Herein, we report the case of a female with rhabdomyolysis as a manifestation of acute COVID-19. CASE REPORT A 35-year-old female was found to have rhabdomyolysis associated with COVID-19. Her creatine kinase and liver enzyme levels were significantly elevated. Ringer’s lactate infusion was administered at a controlled rate to treat the rhabdomyolysis along with boluses of normal saline, with close monitoring of her oxygen saturation and kidney function. The patient’s creatine kinase and liver enzyme levels peaked on Day 2 and then decreased. Her medical condition improved, and she was discharged on Day 4. CONCLUSIONS Our case highlights the need to monitor the creatine kinase level of hospitalized patients with COVID-19. Fluid management can be challenging in patients with rhabdomyolysis due to COVID-19 because of the risk of fluid overload and acute respiratory distress syndrome. Clinicians should be aware that a significant elevation in liver enzyme levels and myalgia can be the presenting features of rhabdomyolysis in patients with COVID-19.
This study aimed to investigate the diagnostic yield of 7-day Holter monitoring for detecting covert atrial fibrillation (AF) in patients with recent embolic stroke of undetermined source (ESUS) and to identify the pre-entry screening biomarkers that had significant associations with later detection of AF (clinicaltrials.gov. NCT02801708).
A total of 206 patients who have recent ESUS without previously documented AF underwent Holter electrocardiography using a chest strap-style monitor. External validation of biomarkers predictive of AF was performed using 83 patients with ESUS who were implanted with i nsertable cardiac monitors.
The 7-day Holter monitoring started at a median of 13 days after the onset of stroke. AF was detected in 14 patients, and three of these showed a single AF episode lasting <2 min. The median time delay to the first documented AF was 50 h. Each of serum brain natriuretic peptide ≥ 66.0 pg/mL (adjusted odds ratio 5.23), atrial premature contractions (APCs) ≥ 345 beats (3.80), and APC short runs ≥ 13 (5.74) on 24-h Holter prior to the 7-day Holter showed a significant association with detection of AF, independent of age and physiological findings in this derivation cohor t, and all of these showed a significant association in the validation cohort (adjusted odds ratio 6.59, 7.87, and 6.16, respectively).
In recent ESUS patients, the detection rate of AF using the 7-day Holter monitoring was 6.8% (95% CI 4.1%-11.1%). Brain natriuretic peptide, APC count, and APC short runs in the standard clinical workup seemed to be predictors of covert AF.
In recent ESUS patients, the detection rate of AF using the 7-day Holter monitoring was 6.8% (95% CI 4.1%-11.1%). Brain natriuretic peptide, APC count, and APC short runs in the standard clinical workup seemed to be predictors of covert AF.Several scientific works have reported the use of colloidal gold nanoparticle (AuNP) solutions as a colorimetric probe for creatinine detection. Nonetheless, urinary protein is one of the primary chemical components that can interfere with creatinine detection. In this work, we developed a colorimetric probe using AuNP colloidal solution to detect creatinine in the urine of proteinuria patients. A microchamber array was prepared to minimize the sample volume and was used to simultaneously perform spectral recording and image acquisition of several samples. The analyzed volume for each sample was 15 μL. A camera coupled with liquid crystal tunable filters was used to record hyperspectral images, and the signals were then converted to localized surface plasmon resonance (LSPR) spectra. Color changes in the AuNP colloidal solution in the presence of varying concentrations of creatinine and human serum albumin (HSA) indicated different features and could be detected by a hyperspectral imaging technique. The relevant concentration ranges of creatinine and HSA were 5 – 200 and 50 – 250 mg dL-1, respectively. Furthermore, a smartphone camera was adopted to record a color mapping image of the AuNP colloidal solution in the presence of creatinine and HSA at these concentration ranges. Contour plots of red and blue chromaticity levels from color mappings were produced, and 2D fitting equations obtained from these contour plots were adopted to determine the creatinine concentration in the urine of proteinuria patients. This practical technique can be used for screening and can be further developed as a household biosensing device for urinalysis.Heparin is an anticoagulant medication that is usually injected subcutaneously. The quality of a set of commercial heparin injections from different producers was examined by NMR, IR, UV-Vis spectroscopies and potentiometric multisensor system. The type of raw material regarding heparin animal origin and producer, heparin molecular weight and activity values were derived based on the non-targeted analysis of 1H NMR fingerprints. DOSY NMR spectroscopy was additionally used to study homogeneity and additives profile. UV-Vis and IR, being cheaper than NMR, combined with multivariate statistics were successfully applied to study excipients composition as well as semi-estimation of activity values. Potentiometric multisensor measurements were found to be an important additional source of information about inorganic composition of finished heparin formulations. All investigated instrumental techniques are useful for finished heparin injections and should be selected according to availability as well as the information and confidence required for a specific sample.Barium (Ba) stable isotopes in carbonate rock have great potential to provide valuable information on environmental change and the biogeochemical cycles of oceans in the past. Ba in carbonate rock can exist in various phases, such as adsorbable and silicate-bound Ba. However, only the carbonate-bound phase is considered to record the Ba isotopic compositions of ambient seaweater. Here, we designed a two-step leaching experiment to obtain the carbonate-bound Ba in two typical carbonate rocks limestone and cap dolostone. The results showed that after leaching by 1 mol L-1 ammonium acetate, the carbonate-bound Ba extracted by mixed solution of 1.5 mol L-1 acetic acid and 1 mol L-1 ammonium acetate in each studied sample have indistinguishable isotope ratios in leaching time conditions between 12 and 72 h. More importantly, the carbonate-bound Ba isotope ratios were quite different from those of the residue (up to 10 times of analytic uncertainty, 2SD ≤ ±0.04‰) after leaching in three out of four leaching experiments, indicating that noncarbonated fraction could overprint a primary seawater signal. Our sequential leaching techniques could improve targeting of carbonate-bound Ba isotope signatures in various carbonate rocks to trace the Ba cycling in the oceans.Since the elasticity of biological tissues is related to their pathological states, the development of new methods allowing for non-invasive measurements of the elasticity has been desired in the medical field. We present a characterization of the elasticity of objects buried in media from the temporal waveforms of photoacoustic signals. As the increment in Young’s moduli of the objects, the frequency corresponding to the gravitational center of the power spectra obtained by the Fourier-transformation of the waveforms is increased. In our experiment configuration, the elasticity of buried objects is able to be identified up to about 1 MPa of Young’s modulus from the frequency. These results suggest that measurements on the temporal waveforms of photoacoustic signals and the resultant power spectra would provide a useful method for evaluating the elasticity of deeply-situated microscopic pathological lesions, such as stage 0 or 1 mammary gland cancer, which is difficult by conventional ultrasound elastography.Nephrotoxicity, the most important toxicity in high-dose methotrexate (MTX) therapy, is partly caused by the formation of crystal deposits in the kidney due to poor water solubility of MTX and its metabolites 7-hydroxy methotrexate (7-OH MTX), deoxyaminopteroic acid (DAMPA) and 7-hydroxy deoxyaminopteroic acid (7-OH DAMPA). Plasma MTX level-guided urine alkalinization, leucovorin rescue and glucarpidase detoxification are common strategies to overcome MTX-related nephrotoxicity. However, overestimation is a problem for MTX analysis by immunoassays due to the cross-reactivity of MTX metabolites (7-OH MTX and DAMPA). An UHPLC-MS/MS method for the simultaneous determination of MTX, 7-OH MTX, DAMPA and 7-OH DAMPA in human urine was developed, validated and applied in clinical practice. Samples were treated by one-step protein precipitation and analyzed within 3 min. The calibration range was 0.02 to 4 μmol/L for MTX and DAMPA, and 0.1 to 20 μmol/L for 7-OH MTX and 7-OH DAMPA. For all analytes, the intra-day and inter-day bias and imprecision were -8.0 to 7.6 and less then 9.0%, the internal standard normalized recovery and matrix factor were 92.34 to 109.49 and less then 20.68%. The plasma MTX and 7-OH MTX levels increased with the urine drug levels, age, serum creatinine and alanine transaminase, but urine could not replace blood for MTX monitoring due to their poor correlation (R2, 0.16 to 0.51). Dose-normalized urine and plasma MTX and 7-OH MTX levels were similar between different patient groups (urine pH less then 7 or ≥7). Due to the large inter-individual variance of the analytes levels in both plasma and urine, these findings should be treated with caution.Acrocarpospora is a rare, recently established actinomycete genus of the family Streptosporangiaceae. In the present study, we sequenced whole genomes of the type strains of Acrocarpospora corrugate, Acrocarpospora macrocephala, and Acrocarpospora pleiomorpha to assess their potency as secondary metabolite producers; we then surveyed their nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) gene clusters. The genome sizes of A. corrugate NBRC 13972T, A. macrocephala NBRC 16266T, and A. pleiomorpha NBRC 16267T were 9.3 Mb, 12.1 Mb, and 11.8 Mb, respectively. Each genome contained 12-17 modular NRPS and PKS gene clusters. Among the 23 kinds of NRPS and PKS gene clusters identified from the three strains, eight clusters were conserved in all the strains, six were shared between A. macrocephala and A. pleiomorpha, and the remaining nine were strain-specific. We predicted the chemical structures of the products synthesized by these gene clusters based on bioinformatic analyses. Since the chemical structures are diverse, Acrocarpospora strains are considered an attractive source of diverse nonribosomal peptide and polyketide compounds.