• Key Kokholm opublikował 1 rok, 3 miesiące temu

    In this paper, we introduce a new strategy for improving the efficiency of upconversion emissions based on triplet-triplet exciton annihilation (TTA-UC) in the solid state. We designed a ternary blend system consisting of a triplet sensitizer (TS), an exciton-transporting host polymer, and a small amount of an annihilator in which the triplet-state energies of the TS, host, and annihilator decrease in this order. The key idea underpinning this concept involves first transferring the triplet excitons generated by the TS to the host and then to the annihilator, driven by the cascaded triplet energy landscape. Because of the small annihilator blend ratio, the local density of triplet excitons in the annihilator domain is higher than those in conventional binary TS/annihilator systems, which is advantageous for TTA-UC because TTA is a density-dependent bimolecular reaction. We tracked the triplet exciton dynamics in the ternary blend film by transient absorption spectroscopy. Host triplet excitons are generated through triplet energy transfer from the TS following intersystem crossing in the TS. These triplet excitons then diffuse in the host domain and accumulate in the annihilator domain. The accumulated triplet excitons undergo TTA to generate singlet excitons that are higher in energy than the excitation source, resulting in UC emission. Based on the excitation-intensity and blend-ratio dependences of TTA-UC, we found that our concept has a positive impact on accelerating TTA.Lithium ion solutions in organic solvents have become ubiquitous because of their use in energy storage technologies. The widespread use of lithium salts has prompted a large scientific interest in elucidating the molecular mechanisms, giving rise to their macroscopic properties. Due to the complexity of these molecular systems, only few studies have been able to unravel the molecular motions and underlying mechanisms of the lithium ion (Li+) solvation shell. Lately, the atomistic motions of these systems have become somewhat available via experiments using ultrafast laser spectroscopies, such as two-dimensional infrared spectroscopy. However, the molecular mechanism behind the experimentally observed dynamics is still unknown. To close this knowledge gap, this work investigated solutions of a highly dissociated salt [LiTFSI lithium bis(trifluoromethanesulfonyl)imide] and a highly associated salt (LiSCN lithium thiocyanate) in acetonitrile (ACN) using both experimental and theoretical methods. Linear and non-linear infrared spectroscopies showed that Li+ is found as free ions and contact ion pairs in ACN/LiTFSI and ACN/LiSCN systems, respectively. In addition, it was also observed from the non-linear spectroscopy experiments that the dynamics of the ACN molecules in the Li+ first solvation shell has a characteristic time of ∼1.6 ps irrespective of the ionic speciation of the cation. A similar characteristic time was deducted from ab initio molecular dynamics simulations and density functional theory computations. Moreover, the theoretical calculations showed that molecular mechanism is directly related to fluctuations in the angle between Li+ and the coordinated ACN molecule (Li+⋯N≡C), while other structural changes such as the change in the distance between the cation and the solvent molecule (Li+⋯N) play a minor role. Overall, this work uncovers the time scale of the solvent motions in the Li+ solvation shell and the underlying molecular mechanisms via a combination of experimental and theoretical tools.It is now well established that the spin-adapted time-dependent density functional theory [X-TD-DFT; Li and Liu, J. Chem. Phys. 135, 194106 (2011)] for low-lying excited states of open-shell systems has very much the same accuracy as the conventional TD-DFT for low-lying excited states of closed-shell systems. In particular, this has been achieved without computational overhead over the unrestricted TD-DFT (U-TD-DFT) that usually produces heavily spin-contaminated excited states. It is shown here that the analytic energy gradients of X-TD-DFT can be obtained by just slight modifications of those of U-TD-DFT running with restricted open-shell Kohn-Sham orbitals. As such, X-TD-DFT also has no overhead over U-TD-DFT in the calculation of energy gradients of excited states of open-shell systems. Although only a few prototypical open-shell molecules are considered as showcases, it can definitely be said that X-TD-DFT can replace U-TD-DFT for geometry optimization and dynamics simulation of excited states of open-shell systems.Vibronic interactions in the pyridine radical cation ground state, 2A1, and its lowest excited states, 2A2 and 2B1, are studied theoretically. These states originate from the ionization out of the highest occupied orbitals of pyridine, 7a1 (nσ), 1a2 (π), and 2b1 (π), respectively, and give rise to the lowest two photoelectron maxima. According to our previous high-level ab initio calculations [Trofimov et al., J. Chem. Phys. 146, 244307 (2017)], the 2A2 (π-1) excited state is very close in energy to the 2A1 (nσ-1) ground state, which suggests that these states could be vibronically coupled. Our present calculations confirm that this is indeed the case. Moreover, the next higher excited state, 2B1 (π-1), is also involved in the vibronic interaction with the 2A1 (nσ-1) and 2A2 (π-1) states. The three-state vibronic coupling problem was treated within the framework of a linear vibronic coupling model employing parameters derived from the ionization energies of pyridine computed using the linear response coupled-cluster method accounting for single, double, and triple excitations (CC3). The potential energy surfaces of the 2A1 and 2A2 states intersect in the vicinity of the adiabatic minimum of the 2A2 state, while the surfaces of the 2A2 and 2B1 states intersect near the 2B1 state minimum. The spectrum computed using the multi-configuration time-dependent Hartree (MCTDH) method accounting for 24 normal modes is in good qualitative agreement with the experimental spectrum of pyridine obtained using high-resolution He I photoelectron spectroscopy and allows for some assignment of the observed features.The recent advent of cutting-edge experimental techniques allows for a precise synthesis of subnanometer metal clusters composed of just a few atoms, opening new possibilities for subnanometer science. In this work, via first-principles modeling, we show how the decoration of perfect and reduced TiO2 surfaces with Ag5 atomic clusters enables the stabilization of multiple surface polarons. Moreover, we predict that Ag5 clusters are capable of promoting defect-induced polarons transfer from the subsurface to the surface sites of reduced TiO2 samples. For both planar and pyramidal Ag5 clusters, and considering four different positions of bridging oxygen vacancies, we model up to 14 polaronic structures, leading to 134 polaronic states. About 71% of these configurations encompass coexisting surface polarons. The most stable states are associated with large inter-polaron distances (>7.5 Å on average), not only due to the repulsive interaction between trapped Ti3+ 3d1 electrons, but also due to the interference between their corresponding electronic polarization clouds [P. López-Caballero et al., J. Mater. Chem. A 8, 6842-6853 (2020)]. As a result, the most stable ferromagnetic and anti-ferromagnetic arrangements are energetically quasi-degenerate. However, as the average inter-polarons distance decreases, most (≥70%) of the polaronic configurations become ferromagnetic. The optical excitation of the midgap polaronic states with photon energy at the end of the visible region causes the enlargement of the polaronic wave function over the surface layer. The ability of Ag5 atomic clusters to stabilize multiple surface polarons and extend the optical response of TiO2 surfaces toward the visible region bears importance in improving their (photo-)catalytic properties and illustrates the potential of this new generation of subnanometer-sized materials.We develop an algorithm based on the method proposed by Dickman for directly measuring pressure in lattice-gas models. The algorithm gives the possibility to access the equation of state with a single run by adding multiple ghost sites to the original system. This feature considerably improves calculations and makes the algorithm particularly efficient for systems with inhomogeneous density profiles, both in equilibrium and nonequilibrium steady states. We illustrate its broad applicability by considering some paradigmatic systems of statistical mechanics such as the lattice gas under gravity, nearest-neighbor exclusion models in finite dimension and on regular random graphs, and the boundary-driven simple symmetric exclusion process.Semiconducting nanoplatelets (NPLs) have attracted great attention due to the superior photophysical properties compared to their quantum dot analogs. Understanding and tuning the optical and electronic properties of NPLs in a plasmonic environment is a new paradigm in the field of optoelectronics. Here, we report on the resonant plasmon enhancement of light emission including Raman scattering and photoluminescence from colloidal CdSe/CdS nanoplatelets deposited on arrays of Au nanodisks fabricated by electron beam lithography. The localized surface plasmon resonance (LSPR) of the Au nanodisk arrays can be tuned by varying the diameter of the disks. In the case of surface-enhanced Raman scattering (SERS), the Raman intensity profile follows a symmetric Gaussian shape matching the LSPR of the Au nanodisk arrays. The surface-enhanced photoluminescence (SEPL) profile of NPLs, however, follows an asymmetric Gaussian distribution highlighting a compromise between the excitation and emission enhancement mechanisms originating from energy transfer and Purcell effects. The SERS and SEPL enhancement factors depend on the nanodisk size and reach maximal values at 75 and 7, respectively, for the sizes, for which the LSPR energy of Au nanodisks coincides with interband transition energies in the semiconductor platelets. Finally, to explain the origin of the resonant enhancement behavior of SERS and SEPL, we apply a numerical simulation to calculate plasmon energies in Au nanodisk arrays and emission spectra from NPLs in such a plasmonic environment.Neon cluster ions Nes+ grown in pre-ionized, mass-to-charge selected helium nanodroplets (HNDs) reveal a strong enrichment of the heavy isotope 22Ne that depends on cluster size s and the experimental conditions. For small sizes, the enrichment is much larger than previously reported for bare neon clusters grown in nozzle expansions and subsequently ionized. The enrichment is traced to the massive evaporation of neon atoms in a collision cell that is used to strip helium from the HNDs. We derive a relation between the enrichment of 22Ne in the cluster ion and its corresponding depletion factor F in the vapor phase. The value thus found for F is in excellent agreement with a theoretical expression that relates isotopic fractionation in two-phase equilibria of atomic gases to the Debye temperature. Furthermore, the difference in zero-point energies between the two isotopes computed from F agrees reasonably well with theoretical studies of neon cluster ions that include nuclear quantum effects in the harmonic approximation. Another fitting parameter provides an estimate for the size si of the precursor of the observed Nes+. The value is in satisfactory agreement with the size estimated by modeling the growth of Nes+ and with lower and upper limits deduced from other experimental data. On the other hand, neon clusters grown in neutral HNDs that are subsequently ionized by electron bombardment exhibit no statistically significant isotope enrichment at all. The finding suggests that the extent of ionization-induced dissociation of clusters embedded in HNDs is considerably smaller than that for bare clusters.A combined approach based on quantum-chemical calculations and molecular beam experiments demonstrates that in isolated nanoalloy clusters of type GdSnN, a total number of N = 19 tin atoms can be arranged around a central gadolinium atom. While the formation of the first coordination shell is incomplete for clusters with less than 15 tin atoms, the second coordination sphere starts to form for cluster sizes of more than 20 tin atoms. The magnetic properties of the clusters reveal that the tin atoms not only provide a hollow cage for Gd but also are chemically bound to the central atom. The calculated spin densities imply that an electron transfer from Gd to the tin cage takes place, which is similar to what is observed for endohedral metallofullerenes. However, the measured electric dipole moments indicate that in contrast to metallofullerenes, the Gd atom is located close to the center of the tin cage.We develop a stochastic theory that treats time-dependent exciton-exciton s-wave scattering and that accounts for dynamic Coulomb screening, which we describe within a mean-field limit. With this theory, we model excitation-induced dephasing effects on time-resolved two-dimensional coherent optical lineshapes and we identify a number of features that can be attributed to the many-body dynamics occurring in the background of the exciton, including dynamic line narrowing, mixing of real and imaginary spectral components, and multi-quantum states. We test the model by means of multidimensional coherent spectroscopy on a two-dimensional metal-halide semiconductor that hosts tightly bound excitons and biexcitons that feature strong polaronic character. We find that the exciton nonlinear coherent lineshape reflects many-body correlations that give rise to excitation-induced dephasing. Furthermore, we observe that the exciton lineshape evolves with the population time over time windows in which the population itself is static in a manner that reveals the evolution of the multi-exciton many-body couplings. Specifically, the dephasing dynamics slow down with time, at a rate that is governed by the strength of exciton many-body interactions and on the dynamic Coulomb screening potential. The real part of the coherent optical lineshape displays strong dispersive character at zero time, which transforms to an absorptive lineshape on the dissipation timescale of excitation-induced dephasing effects, while the imaginary part displays converse behavior. Our microscopic theoretical approach is sufficiently flexible to allow for a wide exploration of how system-bath dynamics contribute to linear and non-linear time-resolved spectral behavior.During drying of binary colloidal mixtures, one colloidal particle component can segregate to the top surface. We investigate conditions where the segregation occurs through the analysis of a linearized diffusion model with Fick’s law generalized for binary colloidal mixtures. The present model is the simplest representation that includes cross-diffusion between different particle components to describe the segregation. Using the analytical solutions of this model, we classify states in terms of which the particle component segregates for the following variables the mixture ratio of particle components, diffusion coefficients, and drying rates. The obtained state diagrams suggest how to control the segregation by designing material and operation conditions.The rung-3.5 approach to density functional theory constructs nonlocal approximate correlation from the expectation values of nonlocal one-electron operators. This offers an inexpensive solution to hybrid functionals’ imbalance between exact nonlocal exchange and local approximate correlation. Our rung-3.5 correlation functionals also include a local complement to the nonlocal ingredient, analogous to the local exchange component of a hybrid functional. Here, we use the density matrix expansion (DME) to build rung-3.5 complements. We demonstrate how these provide a measure of local fractional occupancy and use them to approximate the flat-plane condition. We also use these complements in a three-parameter nonlocal correlation functional compatible with full nonlocal exchange. This functional approaches the accuracy of widely used hybrids for molecular thermochemistry and kinetics. The DME provides a foundation for practical, minimally empirical, nonlocal correlation functionals compatible with full nonlocal local exchange.We prepared triplet-triplet annihilation photon upconverters combining thin-film methylammonium lead iodide (MAPI) perovskite with a rubrene annihilator in a bilayer structure. Excitation of the perovskite film leads to delayed, upconverted photoluminescence emitted from the annihilator layer, with triplet excitation of the rubrene being driven by carriers excited in the perovskite layer. To better understand the connections between the semiconductor properties of the perovskite film and the upconversion efficiency, we deliberately varied the perovskite film properties by modifying two spin-coating conditions, namely, the choice of antisolvent and the antisolvent dripping time, and then studied the resulting photon upconversion performance with a standard annihilator layer. A stronger upconversion effect was exhibited when the perovskite films displayed brighter and more uniform photoluminescence. Both properties were sensitive to the antisolvent dripping time and were maximized for a dripping time of 20 s (measured relative to the end of the spin-coating program). Surprisingly, the choice of antisolvent had a significant effect on the upconversion performance, with anisole-treated films yielding on average a tenfold increase in upconversion intensity compared to the chlorobenzene-treated equivalent. This performance difference was correlated with the carrier lifetime in the perovskite film, which was 52 ns and 306 ns in the brightest chlorobenzene and anisole-treated films, respectively. Since the bulk properties of the anisole- and chlorobenzene-treated films were virtually identical, we concluded that differences in the defect density at the MAPI/rubrene interface, linked to the choice of antisolvent, must be responsible for the differing upconversion performance.The molecular dissociation energy has often been explained and discussed in terms of singlet bonds, formed by bounded pairs of valence electrons. In this work, we use a highly correlated resonating valence bond ansatz, providing a consistent paradigm for the chemical bond, where spin fluctuations are shown to play a crucial role. Spin fluctuations are known to be important in magnetic systems and correspond to the zero point motion of the spin waves emerging from a magnetic broken symmetry state. Within our ansatz, a satisfactory description of the carbon dimer is determined by the magnetic interaction of two carbon atoms with antiferromagnetically ordered S = 1 magnetic moments. This is a first step that, thanks to the highly scalable and efficient quantum Monte Carlo techniques, may open the door for understanding challenging complex systems containing atoms with large spins (e.g., transition metals).Model Hamiltonians with long-range interaction yield energies are corrected taking into account the universal behavior of the electron-electron interaction at a short range. Although the intention of this paper is to explore the foundations of using density functionals combined with range separation, the approximations presented can be used without them, as illustrated by a calculation on harmonium. In the regime, when the model system approaches the Coulomb system, they allow the calculation of ground states, excited states, and properties, without making use of the Hohenberg-Kohn theorem. Asymptotically, the technique is improvable and allows for error estimates that can validate the results. Some considerations for correcting the errors of finite basis sets in this spirit are also presented. Being related to the present understanding of density functional approximations, the results are comparable to those obtained with the latter, as long as these are accurate.The objective of this study is to understand the fracture mechanisms in the lithium manganese oxide (LiMn2O4) electrode at the molecular level by studying mechanical properties of the material at different values of the State of Charge (SOC) using the principles of molecular dynamics (MD). A 2 × 2 × 2 cubic structure of the LiMn2O4 unit cell containing eight lithium ions, eight trivalent manganese ions, eight tetravalent manganese ions, and 32 oxygen ions is studied using a large-scale atomic/molecular massively parallel simulator. As part of the model validation, the lattice parameter and volume changes of LixMn2O4 as a function of SOC (0 less then x less then 1) have been studied and validated with respect to the experimental data. This validated model has been used for a parametric study involving the SOC value, strain rate (charge and discharge rate), and temperature. The MD simulations suggest that the lattice constant varies from 8.042 Å to 8.235 Å during a full discharging cycle, in agreement with the experimental data. The material at higher SOC shows more ductile behavior compared to low SOC values. Furthermore, yield and ultimate stresses are less at lower SOC values except when SOC values are within 0.125 and 0.375, verifying the phase transformation theory in this range. The strain rate does not affect the fully intercalated material significantly but seems to influence the material properties of the partially charged electrode. Finally, a study of the effect of temperature suggests that diffusion coefficient values for both high and low-temperature zones follow an Arrhenius profile, and the results are successfully explained using the vacancy diffusion mechanism.Non-equilibrium molecular dynamics (NEMD) simulations universally rely on thermostats to control temperature. The thermostat-induced alteration in the system dynamics that enables temperature control can, however, adversely impact molecular transport across the temperature-controlled and temperature-uncontrolled regions. Here, we analyze the influence of a thermostat on thermal transport across a solid-liquid interface in a canonical setup that, owing to its generality, has been widely employed in NEMD simulations. In scenarios wherein temperature is controlled via stochastic/frictional forcing based thermostats, we find occurrence of a spurious temperature jump across the solid-liquid interface. The corresponding Kapitza length diminishes with a gradual weakening of the coupling between the thermostat and the system. Hence, we identify an optimal thermostat control parameter range over which contrasting requirements of an effective temperature control and a sufficiently low interfacial thermal resistance are simultaneously satisfied. We show that a similar disruption in thermal transport occurs in a single phase system of pure solid atoms as well. We trace the microscopic origin of the anomalous interfacial thermal resistance to a stochastic/frictional forcing-induced alteration in the force autocorrelation function. We propose a simple model consisting of an individual atom impinging in vacuo on a thermostatted solid as a computationally inexpensive alternative for determination of the control parameter range over which thermostat-induced spurious thermal resistance across a solid-liquid interface becomes significant. Our results suggest that the undesirable possibility of MD-deduced temperature jumps being misleading indicators of the interfacial Kapitza resistance could simply be eliminated through a judicious choice of the thermostat control parameter.We propose a novel classical density functional theory (DFT) for inhomogeneous polyatomic liquids based on the grand canonical ensemble of a solute-solvent system. Different from the existing DFT for interaction site model developed by Chandler et al. [J. Chem. Phys. 85, 5971 (1986)], the fundamental quantities in the present theory are the radial density distributions around the atomic site of the solute molecule. With this development and the reference interaction site model equation, we provide self-consistent integral equations for calculating the site-site pair correlation function (PCF) and apply it to the structure of the Lennard-Jones dimer, HCl, and H2O molecular fluids. The site-site PCFs obtained from the new scheme agree well with those from Monte Carlo simulation results.Amorphous alumina (a-AlOx), which plays important roles in several technological fields, shows a wide variation of density and composition. However, their influences on the properties of a-AlOx have rarely been investigated from a theoretical perspective. In this study, high-dimensional neural network potentials were constructed to generate a series of atomic structures of a-AlOx with different densities (2.6 g/cm3-3.3 g/cm3) and O/Al ratios (1.0-1.75). The structural, vibrational, mechanical, and thermal properties of the a-AlOx models were investigated, as well as the Li and Cu diffusion behavior in the models. The results showed that density and composition had different degrees of effects on the different properties. The structural and vibrational properties were strongly affected by composition, whereas the mechanical properties were mainly determined by density. The thermal conductivity was affected by both the density and composition of a-AlOx. However, the effects on the Li and Cu diffusion behavior were relatively unclear.Photocatalytic hydrogenation of carbon dioxide (CO2) to produce value-added chemicals and fuel products is a critical routine to solve environmental issues. However, developing photocatalysts composed of earth-abundant, economic, and environmental-friendly elements is desired and challenging. Metal oxide clusters of subnanometer size have prominent advantages for photocatalysis due to their natural resistance to oxidation as well as tunable electronic and optical properties. Here, we exploit 3d transition metal substitutionally doped Zn12O12 clusters for CO2 hydrogenation under ultraviolet light. By comprehensive ab initio calculations, the effect of the dopant element on the catalytic behavior of Zn12O12 clusters is clearly revealed. The high activity for CO2 hydrogenation originates from the distinct electronic states and charge transfer from transition metal dopants. The key parameters governing the activity and selectivity, including the d orbital center of TM dopants and the energy level of the highest occupied molecular orbital for the doped Zn12O12 clusters, are thoroughly analyzed to establish an explicit electronic structure-activity relationship. These results provide valuable guidelines not only for tailoring the catalytic performance of subnanometer metal oxide clusters at atomic precision but also for rationally designing non-precious metal photocatalysts for CO2 hydrogenation.Many problems in materials science and biology involve particles interacting with strong, short-ranged bonds that can break and form on experimental timescales. Treating such bonds as constraints can significantly speed up sampling their equilibrium distribution, and there are several methods to sample probability distributions subject to fixed constraints. We introduce a Monte Carlo method to handle the case when constraints can break and form. More generally, the method samples a probability distribution on a stratification a collection of manifolds of different dimensions, where the lower-dimensional manifolds lie on the boundaries of the higher-dimensional manifolds. We show several applications of the method in polymer physics, self-assembly of colloids, and volume calculation in high dimensions.Thermal rectification (TR) in graphene/boron nitride (GBN) monolayer heterosheets containing various types of interfacial structures has been studied using molecular dynamic simulations. The TR effect is ascribed to the asymmetric heat flow caused by mismatched PDOS of graphene and BN in the boundary. Additionally, the dependences of TR effects on boundary structures and defects are discussed. At a temperature difference of 240 K and interfacial chirality angle of 30°, a TR ratio as high as 334% is obtained. Our studies prove that the TR effect of GBN could be effectively regulated by controlling the interfacial structures and defects, and our analyses provide guidance on the structural designs of unique thermal management materials.Molecular force field simulation is an effective method to explore the properties of DNA molecules in depth. Almost all current popular force fields calculate atom-atom electrostatic interaction energies for DNAs based on the atomic charge and dipole or quadrupole moments, without considering high-rank atomic multipole moments for more accurate electrostatics. Actually, the distribution of electrons around atomic nuclei is not spherically symmetric but is geometry dependent. In this work, a multipole expansion method that allows us to combine polarizability and anisotropy was applied. One single-stranded DNA and one double-stranded DNA were selected as pilot systems. Deoxynucleotides were cut out from pilot systems and capped by mimicking the original DNA environment. Atomic multipole moments were integrated instead of fixed-point charges to calculate atom-atom electrostatic energies to improve the accuracy of force fields for DNA simulations. Also, the applicability of modeling the behavior of both single-stranded and double-stranded DNAs was investigated. The calculation results indicated that the models can be transferred from pilot systems to test systems, which is of great significance for the development of future DNA force fields.Publicly available toxicological studies on wastewaters associated with unconventional oil and gas (UOG) activities in offshore regions are nonexistent. The current study investigated the impact of hydraulic fracturing-generated flowback water (HF-FW) on whole organism swimming performance/respiration and cardiomyocyte contractility dynamics in mahi-mahi (Coryphaena hippurus-hereafter referred to as „mahi”), an organism which inhabits marine ecosystems where offshore hydraulic fracturing activity is intensifying. Following exposure to 2.75% HF-FW for 24 h, mahi displayed significantly reduced critical swimming speeds (Ucrit) and aerobic scopes (reductions of ∼40 and 61%, respectively) compared to control fish. Additionally, cardiomyocyte exposures to the same HF-FW sample at 2% dilutions reduced a multitude of mahi sarcomere contraction properties at various stimulation frequencies compared to all other treatment groups, including an approximate 40% decrease in sarcomere contraction size and a nearly 50% reduction in sarcomere relaxation velocity compared to controls. An approximate 8-fold change in expression of the cardiac contractile regulatory gene cmlc2 was also seen in ventricles from 2.75% HF-FW-exposed mahi. These results collectively identify cardiac function as a target for HF-FW toxicity and provide some of the first published data on UOG toxicity in a marine species.Coal combustion emits a large amount of PM2.5 (particulate matters with aerodynamic diameters less than 2.5 μm) and causes adverse damages to the cardiovascular system. In this study, emissions from anthracite and bitumite were examined. Red mud (RM) acts as an additive and is mixed in coal briquettes with a content of 0-10% as a single variable to demonstrate the reduction in the PM2.5 emissions. Burnt in a regulated combustion chamber, the 10% RM-containing bitumite and anthracite briquettes showed 52.3 and 18.6% reduction in PM2.5, respectively, compared with their chunk coals. Lower cytotoxicity (in terms of oxidative stresses and inflammation factors) was observed for PM2.5 emitted from the RM-containing briquettes than those from non-RM briquettes, especially for the bitumite groups. Besides, the results of western blotting illustrated that the inhibition of NF-κB and MAPK was the potential pathway for the reduction of cytokine levels by the RM addition. The regression analyses further demonstrated that the reduction was attributed to the lower emissions of transition metals (i.e., Mn) and PAHs (i.e., acenaphthene). This pilot study provides solid evidence for the cytotoxicity to vascular smooth muscle cells induced by PM2.5 from coal combustion and potential solutions for reducing the emission of toxic pollutants from human health perspectives.Phosphorus (P) losses from fertilized croplands to inland water bodies cause serious environmental problems. During wet years, high precipitation disproportionately contributes to P losses. We combine simulations of a gridded crop model and outputs from a number of hydrological and climate models to assess global impacts of changes in precipitation regimes on P losses during the 21st century. Under the baseline climate during 1991-2010, median P losses are 2.7 ± 0.5 kg P ha-1 year-1 over global croplands of four major crops, while during wet years, P losses are 3.6 ± 0.7 kg P ha-1 year-1. By the end of this century, P losses in wet years would reach 4.2 ± 1.0 (RCP2.6) and 4.7 ± 1.3 (RCP8.5) kg P ha-1 year-1 due to increases in high annual precipitation alone. The increases in P losses are the highest (up to 200%) in the arid regions of Middle East, Central Asia, and northern Africa. Consequently, in three quarters of the world’s river basins, representing about 40% of total global runoff and home up to 7 billion people, P dilution capacity of freshwater could be exceeded due to P losses from croplands by the end of this century.Biological functionality of isomeric carbohydrates may differ drastically, making their identifications indispensable in many applications of life science. Because of the large number of isoforms, structural assignment of saccharides is challenging and often requires a use of different orthogonal analytical techniques. We demonstrate that isomeric carbohydrates of any isoforms can be distinguished and quantified using solely the library-based method of 2D ultraviolet fragmentation spectroscopy-mass spectrometry (2D UV-MS) of cold ions. The two-dimensional „fingerprint” identities of UV transparent saccharides were revealed by photofragmentation of their noncovalent complexes with aromatic molecules. We assess the accuracy of the method by comparing the known relative concentrations of isomeric carbohydrates mixed in solution with the concentrations that were mathematically determined from the measured in the gas-phase fingerprints of the complexes. For the tested sets with up to five isomers of di- to heptasaccharides, the root-mean-square deviation of 3-5% was typically achieved. This indicates the expected level of accuracy in analysis of unknown mixtures for isomeric carbohydrates of similar complexity.Fractionation information on arsenic (As) in complex samples, particularly solid samples, is of immense interest. Herein, selective extraction of various As species adsorbed onto ferrihydrite as the model substrate was online-adapted to inductively coupled plasma-mass spectrometry (ICP-MS) for sensitive detection. The As-adsorbed ferrihydrite sample was loaded into a homemade online sequential elution device using two commercially available micropipette tips, and then, each fraction of As including nonspecifically adsorbed, specifically adsorbed, iron oxide bonded, and residual species was successively extracted for ICP-MS detection, with H2O, NH4NO3, NH4H2PO4, ammonium oxalate, and HF as the eluents, respectively. While no water-soluble As was detected, the fraction of As bonded to iron oxide was detected as the dominant species (>80%), and the specifically adsorbed As and residual As also accounted for a substantial amount (10%). The method had a detection limit of 0.008 μg/kg for As(III) and 0.013 μg/kg for As(V), with merits such as extremely low sample consumption, high throughput, and minimized experimental manipulation, presenting an alternative strategy for sensitive fractionation analysis of As adsorbed onto solid substrates (e.g., iron oxides, etc.).MALDI mass spectrometry imaging (MSI) enables label-free, spatially resolved analysis of a wide range of analytes in tissue sections. Quantitative analysis of MSI datasets is typically performed on single pixels or manually assigned regions of interest (ROIs). However, many sparse, small objects such as Alzheimer’s disease (AD) brain deposits of amyloid peptides called plaques are neither single pixels nor ROIs. Here, we propose a new approach to facilitate the comparative computational evaluation of amyloid plaque-like objects by MSI a fast PLAQUE PICKER tool that enables a statistical evaluation of heterogeneous amyloid peptide composition. Comparing two AD mouse models, APP NL-G-F and APP PS1, we identified distinct heterogeneous plaque populations in the NL-G-F model but only one class of plaques in the PS1 model. We propose quantitative metrics for the comparison of technical and biological MSI replicates. Furthermore, we reconstructed a high-accuracy 3D-model of amyloid plaques in a fully automated fashion, employing rigid and elastic MSI image registration using structured and plaque-unrelated reference ion images. Statistical single-plaque analysis in reconstructed 3D-MSI objects revealed the Aβ1-42Arc peptide to be located either in the core of larger plaques or in small plaques without colocalization of other Aβ isoforms. In 3D, a substantially larger number of small plaques were observed than that indicated by the 2D-MSI data, suggesting that quantitative analysis of molecularly diverse sparsely-distributed features may benefit from 3D-reconstruction. Data are available via ProteomeXchange with identifier PXD020824.Neuraminidase (NA), one of the major surface glycoproteins of influenza A virus (IAV), is an important diagnostic biomarker and antiviral therapeutic target. Cytolysin A (ClyA) is a nanopore sensor with an internal constriction of 3.3 nm, enabling the detection of protein conformations at the single-molecule level. In this study, a nanopore-based approach is developed for analysis of the enzymatic activity of NA, which facilitates rapid and highly sensitive diagnosis of IAV. Current blockade analysis of the d-glucose/d-galactose-binding protein (GBP) trapped within a type I ClyA-AS (ClyA mutant) nanopore reveals that galactose cleaved from sialyl-galactose by NA of the influenza virus can be detected in real time and at the single-molecule level. Our results show that this nanopore sensor can quantitatively measure the activity of NA with 40-80-fold higher sensitivity than those previously reported. Furthermore, the inhibition of NA is monitored using small-molecule antiviral drugs, such as zanamivir. Taken together, our results reveal that the ClyA protein nanopore can be a valuable platform for the rapid and sensitive point-of-care diagnosis of influenza and for drug screening against the NA target.Boscalid is a succinate dehydrogenase inhibitor fungicide and is frequently detected in surface water. Due to the frequent detection of boscalid, we evaluated its impact on the reproduction of adult zebrafish following a 21 d exposure to 0, 0.01, 0.1, and 1.0 mg/L. Following exposure to boscalid, the fertility of female zebrafish and fertilization rate of spawning eggs were reduced in a concentration-dependent manner up to a respective 87% and 20% in the highest concentration. A significant 16% reduction in the percentage of late vitellogenic oocytes was noted in ovaries, and a significant 74% reduction in the percentage of spermatids in testis was also observed after treatment with 1.0 mg/L. 17β-Estradiol (E2) concentrations decreased significantly in females (34% decrease) but significantly increased in males (15% increase) following 1.0 mg/L boscalid treatment. The expression of genes (such as era, er2b, cyp19a, and cyp19b) related to the hypothalamus-pituitary-gonad-liver (HPGL) axis was significantly altered and positively correlated with E2 concentrations in female and male zebrafish (p less then 0.05). Molecular docking results revealed that the binding modes between boscalid and target proteins (ER and CYP19) of zebrafish were similar to that of the reference compounds and the target proteins. The binding energies indicate that boscalid may have a weak estrogen-like binding effect or CYP19 inhibition, potentially altering the HPGL axis, thereby reducing E2 concentrations and fecundity in females. In contrast, boscalid caused significant induction of E2 steroidogenesis and subsequent feminization of gonads in males, indicating gender-specific adverse outcome pathways.Isoprene is the most abundant unsaturated hydrocarbon in the atmosphere. Ozonolysis of isoprene produces methyl vinyl ketone oxide (MVKO), which may react with atmospheric SO2, formic acid, and other important species at substantial levels. In this study, we utilized ultraviolet absorption to monitor the unimolecular decay kinetics of syn-MVKO in real time at 278-319 K and 100-503 Torr. After removing the contributions of radical reactions and wall loss, the unimolecular decay rate coefficient of syn-MVKO was measured to be kuni = 70 ± 15 s-1 (1σ uncertainty) at 298 K with negligible pressure dependence. In addition, kuni increases from ca. 30 s-1 at 278 K to ca. 175 s-1 at 319 K with an effective Arrhenius activation energy of 8.3 ± 2.5 kcal mol-1, kuni(T) = (9.3 × 107)exp(-4200/T) s-1. Our results indicate that unimolecular decay is the major sink of MVKO in the troposphere. The data would improve the estimation for the steady-state concentrations of MVKO and thus its oxidizing ability.The exploration of the druggability of certain protein-protein interactions (PPIs) still remains a challenging task in drug discovery. Here, we present a case study using the 14-3-3-PPI, showing how small molecules can be located that are able to modulate this key oncogenic pathway. A workflow embracing biophysical techniques and MD simulations was developed to evaluate the potential of a 14-3-3ζ PPI system to bind new tool compounds. The significance of the use of computational approaches to compensate for the limitations of experimental techniques is demonstrated.An intrinsically hydrophilic nanofibrous membrane with chlorine rechargeable biocidal and antifouling functions was prepared by using a combination of chemically bonded N-halamine moieties and zwitterionic polymers (PEI-S). The designed nanofibrous membrane, named as PEI-S@BNF-2 h, can exhibit integrated features of reduced bacterial adhesion, rechargeable biocidal activity, and easy release of killed bacteria by using mild hydrodynamic forces. The representative functional performances of the PEI-S@BNF-2 h membrane include high active chlorine capacity (>4000 ppm), large specific surface area, ease of chlorine rechargeability, long-term stability, and exceptional biocidal activity (99.9999% via contact killing). More importantly, the zwitterionic polymer moieties (PEI-S) brought robust antifouling properties to this biocidal membrane, therefore reducing the biofouling-biofilm effect and prolonging the lifetime of the filtration membrane. These attributes enable the PEI-S@BNF-2 h nanofibrous membrane to effectively disinfect the microbe-contaminated water with high fluxes (10,000 L m-2 h-1) and maintain itself clean for a long-term application.Non-adiabatic vibrational/electronic (vibronic) interactions in photosynthetic pigment/protein complexes (PPCs) have recently attracted considerable interest as a potential source for long-lived dynamic coherence and optimized light harvesting. The analysis of such effects is limited, however, by the complexity of the vibrational spectrum of biological pigments such as chlorophyll (Chl) molecules, which often makes numerical calculations prohibitively expensive and complicates the interpretation of experimental spectroscopic data. This work contributes to both challenges by using numerically exact computational methods to systematically examine vibronic mixing effects in the low-temperature fluorescence spectra of a Chl dimer possessing a full complement of local vibrations, using parameters extracted from experimental data. The results highlight the varying roles local vibrations can play in energy-transfer dynamics, both enhancing delocalization through vibronic resonance and, conversely, inducing dynamic localization by acting as a „self-bath” for local electronic transitions. In the specific context of line-narrowed fluorescence, the results indicate that, while low-frequency features are strongly suppressed by delocalization, high-frequency modes are likely to be dynamically localized in the parameter regime relevant to most photosynthetic complexes.Methylmercury (MeHg) is a bioaccumulative neurotoxin produced by certain sulfate-reducing bacteria and other anaerobic microorganisms. Because microorganisms differ in their capacity to methylate mercury, the abundance and distribution of methylating populations may determine MeHg production in the environment. We compared rates of MeHg production and the distribution of hgcAB genes in epilimnetic sediments from a freshwater lake that were experimentally amended with sulfate levels from 7 to 300 mg L-1. The most abundant hgcAB sequences were associated with clades of Methanomicrobia, sulfate-reducing Deltaproteobacteria, Spirochaetes, and unknown environmental sequences. The hgcAB+ communities from higher sulfate amendments were less diverse and had relatively more Deltaproteobacteria, whereas the communities from lower amendments were more diverse with a larger proportion of hgcAB sequences affiliated with other clades. Potential methylation rate constants varied 52-fold across the experiment. Both potential methylation rate constants and % MeHg were the highest in sediments from the lowest sulfate amendments, which had the most diverse hgcAB+ communities and relatively fewer hgcAB genes from clades associated with sulfate reduction. Although pore water sulfide concentration covaried with hgcAB diversity across our experimental sulfate gradient, major changes in the community of hgcAB + organisms occurred prior to a significant buildup of sulfide in pore waters. Our results indicate that methylating communities dominated by diverse anaerobic microorganisms that do not reduce sulfate can produce MeHg as effectively as communities dominated by sulfate-reducing populations.Few schools and child care facilities test for Pb in their drinking water. Reviewing the United States Environmental Protection Agency Lead and Copper rule data can contribute to guiding future legislation on Pb testing. This work aims to (i) identify variations in Pb levels in North Carolina school and child care drinking water by building age, (ii) evaluate the effect of corrosion control measures on reducing these levels, and (iii) evaluate the adequacy of Pb reporting limits according to modern instrumentation. To achieve these objectives, information on 26,608 water samples collected in 206 North Carolina child centers between 1991 and 2019 has been analyzed. Lead concentrations were above a recently proposed 5 μg/L trigger level in 12.3%, 10.4%, 7.5%, and 0.9% of samples from pre-1987, 1987-1990, 1991-2013, and post-2013 buildings, respectively. Thus, recently proposed legislation requiring testing only for pre-1987 (or pre-1991) buildings will fail to identify all centers at risk. The odds that a greater than 5 μg/L Pb level is detected has been decreasing over the years, with a faster decreasing rate for buildings reporting corrosion control. Over 15% of samples report a method detection limit of 5 μg/L. For accurate results, future legislation should require sub-μg/L detection limits, which are easily achievable with commonly available instrumentation.Estrogen receptor (ER) plays important roles in gene transcription and the proliferation of ER positive breast cancers. Selective modulation of ER has been a therapeutic target for this specific type of breast cancer for more than 30 years. Selective estrogen receptor modulators (SERMs) and aromatase inhibitors (AIs) have been demonstrated to be effective therapeutic approaches for ER positive breast cancers. Unfortunately, 30-50% of ER positive tumors become resistant to SERM/AI treatment after 3-5 years. Fulvestrant, the only approved selective estrogen receptor degrader (SERD), is currently an important therapeutic approach for the treatment of endocrine-resistant breast cancers. The poor pharmacokinetic properties of fulvestrant have inspired the development of a new generation of oral SERDs to overcome drug resistance. In this review, we describe recent advances in ERα structure, functions, and mechanisms of endocrine resistance and summarize the development of oral SERDs in both academic and industrial areas.Four high-spin macrocyclic Co(II) complexes with hydroxypropyl or amide pendants and appended coumarin or carbostyril fluorophores were prepared as CEST (chemical exchange saturation transfer) MRI probes. The complexes were studied in solution as paramagnetic CEST (paraCEST) agents and after loading into Saccharomyces cerevisiae yeast cells as cell-based CEST (cellCEST) agents. The fluorophores attached to the complexes through an amide linkage imparted an unusual pH dependence to the paraCEST properties of all four complexes through of ionization of a group that was attributed to the amide NH linker. The furthest shifted CEST peak for the hydroxypropyl-based complexes changed by ∼90 ppm upon increasing the pH from 5 to 7.5. At acidic pH, the Co(II) complexes exhibited three to four CEST peaks with the most highly shifted CEST peak at 200 ppm. The complexes demonstrated substantial paramagnetic water proton shifts which is a requirement for the development of cellCEST agents. The large shift in the proton resonance was attributed to an inner-sphere water at neutral pH, as shown by variable temperature 17O NMR spectroscopy studies. Labeling of yeast with one of these paraCEST agents was optimized with fluorescence microscopy and validated by using ICP mass spectrometry quantitation of cobalt. A weak asymmetry in the Z-spectra was observed in the yeast labeled with a Co(II) complex, toward a cellCEST effect, although the Co(II) complexes were toxic to the cells at the concentrations necessary for observation of cellCEST.Computations based on density functional theory (DFT) are transforming various aspects of materials research and discovery. However, the effort required to solve the central equation of DFT, namely the Kohn-Sham equation, which remains a major obstacle for studying large systems with hundreds of atoms in a practical amount of time with routine computational resources. Here, we propose a deep learning architecture that systematically learns the input-output behavior of the Kohn-Sham equation and predicts the electronic density of states, a primary output of DFT calculations, with unprecedented speed and chemical accuracy. The algorithm also adapts and progressively improves in predictive power and versatility as it is exposed to new diverse atomic configurations. We demonstrate this capability for a diverse set of carbon allotropes spanning a large configurational and phase space. The electronic density of states, along with the electronic charge density, may be used downstream to predict a variety of materials properties, bypassing the Kohn-Sham equation, leading to an ultrafast and high-fidelity DFT emulator.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0