• Duke Morrison opublikował 5 miesięcy, 1 tydzień temu

    Our findings agreed with those from enzyme-linked immunosorbent assay, GeneXpert MTB/rifampin assay, and polymerase chain reaction detection of TB-DNA and those from clinical imaging techniques. Therefore, our analytical system may provide an additional and more sensitive tool for the early diagnosis of TB.Superhydrophobic metallic surfaces with a water contact angle greater than 150° have attracted considerable attention in both fundamental research and industrial applications due to their special properties such as antibiofouling, drag reduction, self-cleaning, anti-icing, anticorrosion, and oil-water separation. Until now, the development of superhydrophobic practical applications is mainly limited by the process complexity, long fabrication time, coating with toxic materials, and easily damaged surface structure. To reduce the fabrication time, and simplify the process for industrial applications, an eco-friendly postprocess has been developed in this research. The superhydrophobic surfaces on the laser-textured titanium, aluminum, copper, stainless steel, and nickel substrates were fabricated extremely rapidly by a simple surface modification of only a 10 min heat treatment with nontoxic silicone oil. Hydrophobic organic group absorption has been accelerated on the silicone oil heat-treated surface and has created a low-energy surface. In addition, we demonstrated the potential of using the laser areal fluence parameter, which could be an alternative to single-laser process parameters such as scanning speed, power, and step size, to fine-tune the water adhesion behavior. Therefore, a surface that integrates different water adhesion behaviors can be easily fabricated for more complex practical applications such as controlled microdroplet transportation, microfluidic systems, and certain biomedical processes. Moreover, the robustness of superhydrophobic surfaces was confirmed by abrasion tests, knife-scratch tests, chemical durability tests, and aging tests, and their repairability was evaluated for product applications in practice.Optical density based measurements are routinely performed to monitor the growth of microbes. These measurements solely depend upon the number of cells and do not provide any information about the changes in the biochemical milieu or biological status. An objective information about these parameters is essential for evaluation of novel therapies and for maximizing the metabolite production. In the present study, we have applied Raman spectroscopy to monitor growth kinetics of three different pathogenic Gram-negative microbes Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Spectral measurements were performed under 532 nm excitation with 5 seconds of exposure time. Spectral features suggest temporal changes in the „peptide” and „nucleic acid” content of cells under different growth stages. Using principal component analysis (PCA), successful discrimination between growth phases was also achieved. Overall, the findings are supportive of the prospective adoption of Raman based approaches for monitoring microbial growth.Hydrogen peroxide (H2O2), one of the most stable and abundant reactive oxygen species (ROS), acting as a modulator of dopaminergic signaling, has been intimately implicated in Parkinson’s disease, creating a critical need for the selective quantification of H2O2 in the living brain. Current natural or nanomimic enzyme-based electrochemical methods employed for the determination of H2O2 suffer from inadequate selectivity and stability, due to which the in vivo measurement of H2O2 in the living brain remains a challenge. Herein, a series of 5-(1,2-dithiolan-3-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pentanamide (DBP) derivatives were designed by tuning the substitute groups and sites of a boric acid ester, which served as probes to specifically react with H2O2. Consequently, the reaction products, 5-(1,2-dithiolan-3-yl)-N-(4-hydroxyphen-yl)pentanamide (DHP) derivatives, converted the electrochemical signal from inactive into active. After systematically evaluating their performances, 5-(1,2-dithiolan-3-yl)-N-(3-chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pentanamide (o-Cl-DBP) was finally identified as the optimized probe for H2O2 detection as it revealed the fastest reaction time, the largest current density, and the most negative potential. In addition, electrochemically oxidized graphene oxide (EOGO) was utilized to produce a stable inner reference. The designed electrochemical microsensor provided a ratiometric strategy for real-time tracking of H2O2 in a linear range of 0.5-600 μM with high selectivity and accuracy. Eventually, the efficient electrochemical microsensor was successfully applied to the measurement of H2O2 in Parkinson’s disease (PD) mouse brain. The average levels of H2O2 in the cortex, striatum, and hippocampus in the normal mouse and PD mouse were systematically compared for the first time.Combining single-cell measurements of ERK activity dynamics with perturbations provides insights into the MAPK network topology. We built circuits consisting of an optogenetic actuator to activate MAPK signaling and an ERK biosensor to measure single-cell ERK dynamics. This allowed us to conduct RNAi screens to investigate the role of 50 MAPK proteins in ERK dynamics. We found that the MAPK network is robust against most node perturbations. We observed that the ERK-RAF and the ERK-RSK2-SOS negative feedback operate simultaneously to regulate ERK dynamics. Bypassing the RSK2-mediated feedback, either by direct optogenetic activation of RAS, or by RSK2 perturbation, sensitized ERK dynamics to further perturbations. Similarly, targeting this feedback in a human ErbB2-dependent oncogenic signaling model increased the efficiency of a MEK inhibitor. The RSK2-mediated feedback is thus important for the ability of the MAPK network to produce consistent ERK outputs, and its perturbation can enhance the efficiency of MAPK inhibitors.The potential of natural products in mitigating infections and diseases are being considered lately. Herein, via in silico methods, we report the possible molecular mechanism of mangiferin (isolated from the fruit, peel, bark and leaves of mango tree) and its derivatives in inhibiting Eimeria tenella hexokinase. We evaluated the binding affinity of these inhibitors to the glucose binding site of EtHK and thereafter proceeded to molecular dynamics simulation. The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) reveals that three of the derivatives (CPAMM, MxPAMM and NAMM) had better total binding free energy than mangiferin. The ADMET and physicochemical properties assessed shows that inhibitors also hold a potential to be drug-likely. Finally, in mediating their inhibitory potentials, the ligands stabilize both the global and local structures of the protein. This study provides a theoretical premise on which the anti-coccidial propensities of mangiferin most especially its derivatives can be investigate in vitro and in vivo.Communicated by Ramaswamy H. Sarma.Belantamab mafodotin (BLMF) is a B-cell maturation antigen-directed antibody-drug conjugate, recently approved for advanced multiple myeloma (MM). The impact of BLMF-induced ocular toxicity on patient outcomes is unknown. We studied a cohort of 38 consecutively seen patients treated with BLMF outside of trials. Of those, 75% experienced ocular toxicity, with 69% developing keratopathy. Among patients requiring ocular toxicity-related permanent BLMF discontinuation (14%) or dose reduction (11%), 70% had progression of MM within a median of 3 months (95% confidence interval 0.2-not reached) following BLMF interruption or dose reduction. Ocular toxicity is a major deterrent to the continuous use of BLMF in routine clinical practice. Measures to successfully prevent and mitigate ocular toxicity should be developed to achieve the full potential of this agent.Peptide-bound methionine may transfer oxidative damage from the thioether side chain to the peptide backbone, catalyzing decomposition in general and α-amidation in particular. In the present study, we focused on the reactivity and reaction pathways of peptides. We synthesized model peptides comprising methionine or not and investigated their overall tendency towards decomposition and formation of specific products under conditions mimicking the cooking process at 100°C in buffered solution (pH 6.0) in the presence of redox-active substances such as transition metal ions and reductones. Peptides containing methionine were more susceptible to α-amidation under all oxidative conditions, and the products of N-terminus-directed α-amidation were quantified. Exemplarily, after incubation in the presence of cupric sulfate, about 2.0 mol-% of the overall decomposition of Z-glycylmethionylglycine accounted for the formation of Z-glycinamide, whereas it was below 0.1 mol-% for Z-glycylalanylglycine. Surprisingly and different from previous observations, C-terminus-directed α-amidation was observed for the first time. From Z-glycylmethionylglycine, the respective products were formed in higher amounts than the N-terminus-directed α-amidation product Z-glycinamide under all applied oxidation conditions. The preference of electron transfer from the amino nitrogen bound in the peptide bond directed to the C-terminus may be ascribed to a sterically less demanding hexagonal 3-electron-2-center intermediate during methionine-catalyzed α-amidation.Predicting the quantitative regulatory function of transcription factors (TFs) based on factors such as binding sequence, binding location, and promoter type is not possible. The interconnected nature of gene networks and the difficulty in tuning individual TF concentrations make the isolated study of TF function challenging. Here, we present a library of Escherichia coli strains designed to allow for precise control of the concentration of individual TFs enabling the study of the role of TF concentration on physiology and regulation. We demonstrate the usefulness of this resource by measuring the regulatory function of the zinc-responsive TF, ZntR, and the paralogous TF pair, GalR/GalS. For ZntR, we find that zinc alters ZntR regulatory function in a way that enables activation of the regulated gene to be robust with respect to ZntR concentration. For GalR and GalS, we are able to demonstrate that these paralogous TFs have fundamentally distinct regulatory roles beyond differences in binding affinity.

    Fibromyalgia syndrome (FMS) is a chronic pain condition associated with a significant reduction in health-related quality of life (HRQoL). This study compared the different components of HRQoL between FMS and rheumatoid arthritis (RA) patients, and evaluated the relationships between HRQoL and clinical and emotional factors in FMS and RA patients.

    Women with FMS (n = 80), RA (

     = 43) and healthy women (

     = 67) participated in the study. HRQoL was assessed by the SF-36 survey. Associations between HRQoL and symptom severity were assessed by correlation and multiple linear regression analyses.

    FMS patients displayed lower values for all SF-36 variables than RA patients and healthy participants, while RA patients showed lower values for all SF-36 variables than healthy participants. These group differences persisted after statistically controlling for demographic, clinical and emotional variables. Clinical and emotional factors were inversely associated with SF-36 scores in the overall FMS + RA sample. Depression and fatigue were the strongest negative predictors.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0