-
Clemensen Hermansen opublikował 5 miesięcy, 1 tydzień temu
OBJECTIVE To evaluate the efficacy of the monocyte/lymphocyte, platelet/lymphocyte, and HDL/LDL ratios as markers of the severity of coronary artery ectasia(CE). STUDY DESIGN Cross-sectional study. PLACE AND DURATION OF STUDY Department of Cardiology, Izmir Katip Celebi University and Balikesir University, Turkey, from January 2017 to October 2018. METHODOLOGY A total of 7,923 coronary angiographs were retrospectively scanned. Inclusion criteria was >1.5 times dilatated of native coronary artery segment. Exclusion criteria was less then 1.5 times or no dilatation of native coronary segment compared with normal coronary segment. Demographic features, CE type, clinic status, monocyte/lymphocyte, platelet/ lymphocyte and HDL/LDL ratios are collected. RESULTS Two hundred and six (2.6%) cases were identified, which had a mean age of 61.4 ±11.4 years. The male to female ratio was 31; and 46% of the patients presented with unstable angina. The prevalence of CE was 2.6%; and 118 (57.2%) patients had non-obstructive coronary artery disease. Hypertension, hyperlipidemia and smoking were the most commonly seen disorders. Markis Type 4 was the most common type of CE determined. A statistically significant correlation was determined among the monocyte/lymphocyte ratio, platelet/lymphocyte ratio, and the increased diameter of ectasia of the vessel. CONCLUSION Although there should be awareness of CE, many clinicians do not pay as much attention to CE as to coronary stenosis. The results of this study showed that the monocyte/lymphocyte ratio and platelet/lymphocyte ratio are consistent with the ectasia severity. This correlation will be useful for the evaluation of follow-up and treatment success in patients with CE.The identification of cerebral microinfarctions with magnetic resonance imaging (MRI) and histological methods remains challenging in aging and dementia. Here, we matched pathological changes in the microvasculature of cortical cerebral microinfarcts to MRI signals using single 100 μm-thick histological sections scanned with ultra-high-resolution 11.7 T MRI. Histologically, microinfarcts were located in superficial or deep cortical layers or transcortically, compatible with the pattern of layer-specific arteriolar blood supply of the cerebral cortex. Contrary to acute microinfarcts, at chronic stages the core region of microinfarcts showed pallor with extracellular accumulation of lipofuscin and depletion of neurons, a dense meshwork of collagen 4-positive microvessels with numerous string vessels, CD68-positive macrophages and glial fibrillary acidic protein (GFAP)-positive astrocytes. In MRI scans, cortical microinfarcts at chronic stages, called chronic cortical microinfarcts here, gave hypointense signals in T1-weighted and hyperintense signals in T2-weighted images when thinning of the tissue and cavitation and/or prominent iron accumulation were present. Iron accumulation in chronic microinfarcts, histologically verified with Prussian blue staining, also produced strong hypointense T2*-weighted signals. In summary, the microinfarct core was occupied by a dense microvascular meshwork with string vessels, which was invaded by macrophages and astroglia and contained various degrees of iron accumulation. While postmortem ultra-high-resolution single-section imaging improved MRI-histological matching and the structural characterization of chronic cortical cerebral microinfarcts, miniscule microinfarcts without thinning or iron accumulation could not be detected with certainty in the MRI scans. Moreover, string vessels at the infarct margin indicate disturbances in the microcirculation in and around microinfarcts, which might be exploitable in the diagnostics of cortical cerebral microinfarcts with MRI in vivo.OBJECTIVES The genus Bacillus comprises spore-forming rod-shaped Gram-positive bacteria, which usually grow aerobically or anaerobically. Members of this genus are common environmental microorganisms. Also, they can be monitored in the food production chain. Genome sequence of Bacillus sp. strain EE-W1 will provide helpful information to understand its ecology and genetics. Draft genome data may be useful in the field of using Bacillus species in industrial biotechnology. Also, these data can be a useful resource for the study of comparative genomics. DATA DESCRIPTION Here, we present the draft genome sequence of Bacillus sp. strain EE-W1 isolated from a biogas reactor, Kazan, Russia. The assembled genome size was 5,769,164 bp, with a GC content 35.1%. This draft genome data can be accessed at DDBJ/ENA/GenBank under the accession WIPE00000000.Charcot-Marie-Tooth disease (CMT) is a group of inherited neurological disorders of the peripheral nervous system. CMT is subdivided into two main types a demyelinating form, known as CMT1, and an axonal form, known as CMT2. Nearly 30 genes have been identified as a cause of CMT2. One of these is the 'dehydrogenase E1 and transketolase domain containing 1′ (DHTKD1) gene. We previously demonstrated that a nonsense mutation [c.1455 T > G (p.Y485*)] in exon 8 of DHTKD1 is one of the disease-causing mutations in CMT2Q (MIM 615025). The aim of the current study was to investigate whether human disease-causing mutations in the Dhtkd1 gene cause CMT2Q phenotypes in a mouse model in order to investigate the physiological function and pathogenic mechanisms associated with mutations in the Dhtkd1 gene in vivo. Therefore, we generated a knock-in mouse model with the Dhtkd1Y486* point mutation. We observed that the Dhtkd1 expression level in sciatic nerve of knock-in mice was significantly lower than in wild-type mice. Moreover, a histopathological phenotype was observed, reminiscent of a peripheral neuropathy, including reduced large axon diameter and abnormal myelination in peripheral nerves. The knock-in mice also displayed clear sensory defects, while no abnormalities in the motor performance were observed. In addition, accumulation of mitochondria and an elevated energy metabolic state was observed in the knock-in mice. Taken together, our study indicates that the Dhtkd1Y486* knock-in mice partially recapitulate the clinical phenotypes of CMT2Q patients and we hypothesize that there might be a compensatory effect from the elevated metabolic state in the knock-in mice that enables them to maintain their normal locomotor function.There is evidence that genetic polymorphisms and environmentally induced epigenetic changes play an important role in modifying disease risk. The commensal microbiota has the ability to affect the cellular environment throughout the body without requiring direct contact; for example, through the generation of a pro-inflammatory state. In this review, we discuss evidence that dysbiosis in intestinal, pharyngeal, oral, and ocular microbiome can lead to epigenetic reprogramming and inflammation making the host more susceptible to ocular disease such as autoimmune uveitis, age-related macular degeneration, and open angle glaucoma. Several mechanisms of action have been proposed to explain how changes to commensal microbiota contribute to these diseases. This is an evolving field that has potentially significant implications in the management of these conditions especially from a public health perspective.An acute respiratory disease, caused by a novel coronavirus (SARS-CoV-2, previously known as 2019-nCoV), the coronavirus disease 2019 (COVID-19) has spread throughout China and received worldwide attention. On 30 January 2020, World Health Organization (WHO) officially declared the COVID-19 epidemic as a public health emergency of international concern. The emergence of SARS-CoV-2, since the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, marked the third introduction of a highly pathogenic and large-scale epidemic coronavirus into the human population in the twenty-first century. As of 1 March 2020, a total of 87,137 confirmed cases globally, 79,968 confirmed in China and 7169 outside of China, with 2977 deaths (3.4%) had been reported by WHO. Meanwhile, several independent research groups have identified that SARS-CoV-2 belongs to β-coronavirus, with highly identical genome to bat coronavirus, pointing to bat as the natura novel coronavirus.BACKGROUND By the end of October 2019, there were 958 thousand people were reported living with HIV/AIDS in China. Unhealthy lifestyle factors, such as smoking, drinking alcohol, using illicit drugs and no physical activity have been found to mitigate the positive impact of antiretroviral therapy (ART) on viral load and HIV-related quality of life. Moreover, risky sexual behavior among HIV-positive persons places their partners at risk for HIV transmission and other sexually transmitted infections. The aim of the study is to determine the prevalence of unhealthy behavior of people living with HIV/AIDS and related influencing factors, particularly those that are closely connected with HIV infection and ART effects. METHODS An institutional based cross-sectional study design was used to collect data from people living with HIV/AIDS (PLWHA) in Beijing and Yunnan Province. The following information was included in the questionnaire survey social-demographic characteristics, health behavior information, sexual risjusted odds ratio [OR] = 2.208, 95% confidence interval [CI] 1.147-4.252) and unhealthy general health behaviors (adjusted OR = 2.029, 95% CI 1.480-2.783). The odds of higher risk sexual behaviors was 1.546 times (95% CI 1.302-1.827, P = 0.001) greater among participants who drank alcohol compared with their non-drinking counterparts. CONCLUSIONS PLWHA is a group that is vulnerable to problematic health behaviors, especially for men who were more likely to drink alcohol, have more sexual partners, more sexual risk behaviors including group sexual activity, not using condoms and using drugs. Therefore, interventions focusing on gender-specific risk behaviors reduction for people living with HIV/AIDS are now necessary to control the spread of HIV infection and improve the efficacy of antiviral treatment.BACKGROUND Melanoma is one of the major types of skin cancer. The metastatic melanoma is among the most lethal forms of malignant skin tumors. We hereby aimed to characterize a novel microRNA (miR) in the metastatic melanoma model. METHODS First, we evaluated the expression of miR-107 in melanoma cells and tumor tissues. The comparison between primary and metastatic cancer tissues was also accessed. Next, we examined the impact of miR-107 on melanoma cell proliferation, cell cycle, colony formation, apoptotic activity, migration and matrix invasion. A downstream target of miR-107 was also predicted and validated functionally in melanoma cells. RESULTS Our findings showed miR-107 was significantly downregulated in melanoma. Its expression was lowest in metastatic form. Over-expression of miR-107 reduced melanoma cell proliferation, migration and invasion. POU3F2 was identified as the downstream target of miR-107. Over-expression of POU3F2 antagonized miR-107-mediated inhibitory effect on melanoma cells. CONCLUSION Our study has reported miR-107 as a novel tumor suppressive factor in the metastatic melanoma model. It has provided new avenue to manage melanoma and improve the survival rate in the advanced stage.BACKGROUND Obesity is a metabolic imbalance characterized by excessive deposition of white fat. The browning of white fat can effectively treat obesity and related diseases. Although Dlgap1 (Discs, Large (Drosophila) Homolog-Associated Protein 1) is suspected to have an effect on this process, no empirical evidence is available. METHODS To understand the role of Dlgap1, we cultured white and brown fat cells, then performed overexpression and knockout experiments. RESULTS We found that Dlgap1 overexpression in brown adipocytes inhibits brown-fat-related gene expression, promotes white-fat-related genes, while also increasing brown-adipocyte proliferation and apoptosis. However, the gene overexpression has no effect on brown adipocyte maturation. Knocking out Dlgap1 in white fat cells promotes the expression and inhibition of brown-fat-related and white-fat-related genes, respectively. Additionally, the knockout inhibits white fat cell proliferation and apoptosis, while also promoting their maturation. CONCLUSIONS Dlgap1 negatively regulates the browning of white adipocytes by influencing cell proliferation and apoptosis.PSMA PET imaging was originally used to assess biochemical recurrence of prostate cancer (PCa), but its clinical use was promptly extended to detection, staging and therapy response assessment. The expanding use of PSMA PET worldwide has also revealed PSMA ligand uptake in diverse nonprostatic diseases, which raised questions about the specificity of this imaging modality. Although not very common initially, a growing number of pathologies presenting PSMA uptake on PET have been reported in the last few years, and a proper interpretation of PSMA PET imaging findings suddenly became challenging and, to some extent, confusing. Compared to cytoplasmic PSMA expression in nonprostatic cells, the molecular features of apical PSMA expression in PCa cells can help to distinguish these various conditions. Correlations of imaging findings to patient history, to the expected pattern of disease spread and mainly to computed tomography (CT) and/or magnetic resonance imaging (MRI) characteristics will reinforce the distinction of lesions that are more likely related to PCa from those that could lead to an incorrect diagnosis. The overall benefits of endothelial PSMA expression, which is associated with the neovasculature of malignant neoplasms, will be highlighted, stating the potential use of PSMA ligand uptake as a theranostic tool. This review aims to cover the collection of nonprostatic diseases, including benign and malignant tumors, in a didactic approach according to disease etiology, with discussion of bone-related conditions and inflammatory and infectious processes.BACKGROUND The blood-brain barrier (BBB) maintains homeostasis of the brain environment by tightly regulating the entry of substances from systemic circulation. A breach in the BBB results in increased permeability to potentially toxic substances and is an important contributor to amplification of ischemic brain damage. The precise molecular pathways that result in impairment of BBB integrity remain to be elucidated. Autophagy is a degradation pathway that clears damaged or unnecessary proteins from cells. However, excessive autophagy can lead to cellular dysfunction and death under pathological conditions. METHODS In this study, we investigated whether autophagy is involved in BBB disruption in ischemia, using in vitro cells and in vivo rat models. We used brain endothelial bEnd.3 cells and oxygen glucose deprivation (OGD) to simulate ischemia in culture, along with a rat ischemic stroke model to evaluate the role of autophagy in BBB disruption during cerebral ischemia. RESULTS OGD 18 h induced cellular dysfunction, and increased permeability with degradation of occludin and activation of autophagy pathways in brain endothelial cells. Immunostaining revealed that occludin degradation is co-localized with ischemic autophagosomes. OGD-induced occludin degradation and permeability changes were significantly decreased by inhibition of autophagy using 3-methyladenine (3-MA). Enhanced autophagic activity and loss of occludin were also observed in brain capillaries isolated from rats with middle cerebral artery occlusion (MCAO). Intravenous administration of 3-MA inhibited these molecular changes in brain capillaries, and recovered the increased permeability as determined using Evans blue. CONCLUSIONS Our findings provide evidence that autophagy plays an important role in ischemia-induced occludin degradation and loss of BBB integrity.BACKGROUND Long noncoding RNAs (lncRNAs) play an important role in the multiple differentiations of mesenchymal stem cells (MSCs). However, few studies have focused on the regulatory mechanism of lncRNAs in the odontogenic differentiation of human dental pulp stem cells (hDPSCs). METHODS hDPSCs were induced to differentiate into odontoblasts in vitro, and the expression profiles of lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) in differentiated and undifferentiated cells were obtained by microarray. Bioinformatics analyses including Gene Ontology (GO) analysis, pathway analysis, and binding site prediction were performed for functional annotation of lncRNA. miRNA/odontogenesis-related gene networks and lncRNA-associated ceRNA networks were constructed. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was used to verify the expression of selected genes. RNA fluorescence in situ hybridization (FISH), qRT-PCR, and western blot analysis were used to explore the location and functioated ceRNA network during odontogenic differentiation of hDPSCs using microarray, and it could provide clues to explore the mechanism of action at the RNA-RNA level as well as novel treatments for dentin regeneration based on stem cells.BACKGROUND Recent studies show that changes in one of the brain areas related to empathic abilities (i.e. the ventromedial prefrontal cortex (vmPFC)) plays an important role in violent behavior in abusers of alcohol and cocaine. According to the models of James Blair, empathy is a potential inhibitor of violent behavior. Individuals with less empathic abilities may be less susceptible and motivated to inhibit violent behavior, which causes a higher risk of violence. Recent neuroscientific research shows that modulating (stimulation or inhibition) certain brain areas could be a promising new intervention for substance abuse and to reduce violent behavior, such as the neurostimulation technique transcranial direct current stimulation (tDCS). This study aims to investigate tDCS as an intervention to increase empathic abilities and reduce violent behavior in forensic substance use offenders. METHODS/DESIGN A total sample of 50 male forensic substance abuse patients (25 active and 25 sham stimulation) will be testof tDCS on reducing craving will be investigated. DISCUSSION This study is one of the first studies using multichannel tDCS targeting the vmPFC in a forensic sample. This study will explore the opportunities to introduce a new intervention to improve empathic abilities and reduce violence in forensic substance use offenders. Specifically, this study may give insight into how to implement the tDCS intervention in the setting of daily clinical practice in this complex, multiple-problem target group and with that contribute to reduction of recidivism. TRIAL REGISTRATION Dutch Trial Register, NTR7701. Registered on 12 January 2019. Prospectively registered before the recruitment phase. https//www.trialregister.nl/trial/7459. Recruitment started on the 1st of February 2019 and will be finished approximately in the winter of 2019. Protocol version 1. 22 May 2019.The original article [1] contains errors in Fig. 3C, Results and Discussion.BACKGROUND Psoroptic mange is an important disease in Belgian Blue cattle. Treatment failure of macrocyclic lactones against Psoroptes ovis has been reported, but clear evidence of in vivo resistance is lacking. This study assessed the efficacy of macrocyclic lactone products on 16 beef farms in Belgium and the Netherlands in vivo and in vitro. METHODS On each farm a group of animals (n = 7-14) with psoroptic mange was treated with two subcutaneous injections of a macrocyclic lactone product with 7-10 days interval (15 farms) or a single injection with a long-acting macrocyclic lactone (1 farm). In vivo efficacy was assessed by the reduction in mite counts, clinical index (proportion of the body surface affected by lesions), the proportion of the animals with negative mite counts after the first treatment round and the number of treatment rounds needed to obtain zero mites counts in all animals. A mite population was categorized as sensitive when the mite count reduction after the first treatment round > 95% in mite counts and the lower limit of the confidence interval are proposed as parameters to identify acaricide resistance.BACKGROUND Mesenchymal stromal cells (MSCs) demonstrate considerable promise for acute respiratory distress syndrome (ARDS) and sepsis. However, standard approaches to MSC isolation generate highly heterogeneous cell populations, while bone marrow (BM) constitutes a limited and difficult to access MSC source. Furthermore, a range of cell manufacturing considerations and clinical setting practicalities remain to be explored. METHODS Adult male rats were subject to E. coli-induced pneumonia and administered CD362+ umbilical cord (UC)-hMSCs using a variety of cell production and clinical relevance considerations. In series 1, animals were instilled with E. coli and randomized to receive heterogeneous BM or UC-hMSCs or CD362+ UC-hMSCs. Subsequent series examined the impact of concomitant antibiotic therapy, MSC therapeutic cryopreservation (cryopreserved vs fresh CD362+ UC-hMSCs), impact of cell passage on efficacy (passages 3 vs 5 vs 7 vs 10), and delay of administration of cell therapy (0 h vs 6 h post-injury vs 6 h + 12 h) following E. coli installation. RESULTS CD362+ UC-hMSCs were as effective as heterogonous MSCs in reducing E. coli-induced acute lung injury, improving oxygenation, decreasing bacterial load, reducing histologic injury, and ameliorating inflammatory marker levels. Cryopreserved CD362+ UC-hMSCs recapitulated this efficacy, attenuating E. coli-induced injury, but therapeutic relevance did not extend beyond passage 3 for all indices. CD362+ UC-hMSCs maintained efficacy in the presence of antibiotic therapy and rescued the animal from E. coli injury when delivered at 6 h + 12 h, following E. coli instillation. CONCLUSIONS These translational studies demonstrated the efficacy of CD362+ UC-hMSCs, where they decreased the severity of E. coli-induced pneumonia, maintained efficacy following cryopreservation, were more effective at early passage, were effective in the presence of antibiotic therapy, and could continue to provide benefit at later time points following E. coli injury.Transcriptional repression of Nanog is an important hallmark of stem cell differentiation. Chromatin modifications have been linked to the epigenetic profile of the Nanog gene, but whether chromatin organization actually plays a causal role in Nanog regulation is still unclear. Here, we report that the formation of a chromatin loop in the Nanog locus is concomitant to its transcriptional downregulation during human NTERA-2 cell differentiation. We found that two Alu elements flanking the Nanog gene were bound by the aryl hydrocarbon receptor (AhR) and the insulator protein CTCF during cell differentiation. Such binding altered the profile of repressive histone modifications near Nanog likely leading to gene insulation through the formation of a chromatin loop between the two Alu elements. Using a dCAS9-guided proteomic screening, we found that interaction of the histone methyltransferase PRMT1 and the chromatin assembly factor CHAF1B with the Alu elements flanking Nanog was required for chromatin loop formation and Nanog repression. Therefore, our results uncover a chromatin-driven, retrotransposon-regulated mechanism for the control of Nanog expression during cell differentiation.Information processing and memory formation in the brain relies on release of the main excitatory neurotransmitter glutamate from presynaptic axonal specialisations. The classical Hebbian paradigm of synaptic memory, long-term potentiation (LTP) of transmission, has been widely associated with an increase in the postsynaptic receptor current. Whether and to what degree LTP induction also enhances presynaptic glutamate release has been the subject of debate. Here, we took advantage of the recently developed genetically encoded optical sensors of glutamate (iGluSnFR) to monitor its release at CA3-CA1 synapses in acute hippocampal slices, before and after the induction of LTP. We attempted to trace release events at multiple synapses simultaneously, by using two-photon excitation imaging in fast frame-scanning mode. We thus detected a significant increase in the average iGluSnFR signal during potentiation, which lasted for up to 90 min. This increase may reflect an increased amount of released glutamate or, alternatively, reduced glutamate binding to high-affinity glutamate transporters that compete with iGluSnFR.Coronary artery disease (CAD) is the most common health problem worldwide and remains the leading cause of morbidity and mortality. Over the past decade, it has become clear that the inhabitants of our gut, the gut microbiota, play a vital role in human metabolism, immunity, and reactions to diseases, including CAD. Although correlations have been shown between CAD and the gut microbiota, demonstration of potential causal relationships is much more complex and challenging. In this review, we will discuss the potential direct and indirect causal roots between gut microbiota and CAD development via microbial metabolites and interaction with the immune system. Uncovering the causal relationship of gut microbiota and CAD development can lead to novel microbiome-based preventative and therapeutic interventions. However, an interdisciplinary approach is required to shed light on gut bacterial-mediated mechanisms (e.g., using advanced nanomedicine technologies and incorporation of demographic factors such as age, sex, and ethnicity) to enable efficacious and high-precision preventative and therapeutic strategies for CAD.BACKGROUND Tooth movement is a unique bone remodeling process induced by mechanical stimulation. Macrophages are important in mediating inflammatory processes during mechanical load-induced tooth movement. However, how macrophages are regulated under mechanical stimulation remains unclear. Mesenchymal stem cells (MSCs) can modulate macrophage polarization during bone remodeling. Hydrogen sulfide (H2S) can be produced by MSCs and have been linked to bone homeostasis. Therefore, this study aimed to investigate whether H2S contributed to periodontal ligament stem cell (PDLSC)-regulated macrophage polarization and bone remodeling under mechanical stimulation. METHODS An experimental mechanical load-induced tooth movement animal model was established. Changes in cystathionine-β-synthase (CBS), markers of M1/M2 macrophages, tooth movement distance, and the number of osteoclasts were examined. The conditioned medium of PDLSCs with or without mechanical loading was utilized to treat THP-1 derived macrophages for 24 hNS These data suggest a novel mechanism indicating that mechanical load-stimulated PDLSCs produce H2S to polarize macrophages toward the M1 phenotype via the STAT1 signaling pathway, which contributes to bone remodeling and tooth movement process. These results provide new insights into the role of PDLSCs in regulating macrophage polarization and mediating bone remodeling under mechanical stimulation, and indicate that appropriate H2S supplementation may accelerate tooth movement.BACKGROUND Sema4A is a regulator of helper T cell (Th) activation and differentiation in the priming phase, which plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS). However, the role of Sema4A in the effector phase remains elusive. We aimed to investigate the role of Sema4A at the effector phase in adoptively transferred EAE model. Clinical features and cytokine profiles of MS patients with high Sema4A levels were also examined in detail to clarify the correlation between Sema4A levels and disease activity of patients with MS. METHODS We adoptively transferred encephalitogenic Th1 or Th17 cells to wild type (WT) or Sema4A-deficient (Sema4A KO) mice and assessed severity of symptoms and cellular infiltration within the central nervous system (CNS). In addition, we analyzed clinical and radiological features (n = 201), levels of serum IFN-γ and IL-17A (n = 86), complete remission ratio by IFN-β (n = 38) in all of relapsing-remitting multipneuroinflammation in the effector phase, which could contribute to the higher disease activity observed in RRMS patients with high serum Sema4A levels.BACKGROUND Antimicrobial resistance is an increasingly serious problem in public health globally. Monitoring resistance levels within healthcare and community settings is critical to combat its ongoing increase. This study aimed to describe the rates and molecular mechanisms of mupirocin resistance in clinical Staphylococcus aureus isolates from Tygerberg Hospital, and to describe its association with strain types. METHODS We retrospectively selected 212 S. aureus isolates which were identified from blood samples and pus swabs during the years 2009-2011 and 2015-2017. The isolates were identified using conventional microbiological methods and genotyping was done using spa typing. Cefoxitin (30 μg) disc diffusion and the two disc strategy (5 μg and 200 μg) were used to determine susceptibility to methicillin and mupirocin, respectively. Isolates with high-level resistance were screened for the plasmid mediated genes mupA and mupB by PCR, and sequencing of the ileS gene was done for all isolates exhibiting low-nce, and types t037 and t012 and low-level resistance (p less then 0.0001). CONCLUSION The study reported higher rates of low-level mupirocin resistance compared to high-level resistance, and in our setting, mupirocin resistance was driven by certain genotypes. Our study advocates for the continuous screening for mupirocin resistance in S. aureus in clinical settings to better guide treatment and prescribing practices.Trichinella spiralis is an important foodborne parasitic nematode that represents an enormous threat to the food safety of pork meat. The development of a preventive vaccine is valuable for the prevention and control of Trichinella infection in domestic pigs to ensure pork safety. Elastase is a trypsin-like serine protease that hydrolyzes the host’s diverse tissue components and participates in parasite penetration, and it might be a novel vaccine target molecule. The aim of this study was to assess the protective immunity produced by vaccination with a novel Trichinella spiralis elastase-1 (TsE) in a mouse model. The results demonstrate that subcutaneous vaccination of mice with rTsE elicited a systemic humoral response (high levels of serum IgG and subclass IgG1/IgG2a and IgA) and significant local enteral mucosal sIgA responses. Anti-rTsE IgG recognized the native TsE at the cuticle, stichosome of intestinal infective larvae and adult worm (AW), and intrauterine embryos of female AW. The rTsE vaccination also produced a systemic and local mixed Th1/Th2 response, as demonstrated by clear elevation levels of Th1 cytokines (IFN-γ, IL-2) and Th2 cytokines (IL-4, IL-10) after spleen, mesenteric lymph node and Peyer’s patch cells from immunized mice were stimulated with rTsE. The immunized mice exhibited a 52.19% reduction in enteral AW and a 64.06% reduction in muscle larvae after challenge infection. The immune response triggered by rTsE vaccination protected enteral mucosa from larval intrusion, suppressed larval development and reduced female fecundity. The results indicate that TsE may represent a novel target molecule for anti-T. spiralis vaccines.BACKGROUND Breast cancer patients with early-stage disease are increasingly administered neoadjuvant chemotherapy (NAC) to downstage their tumors prior to surgery. In this setting, approximately 31% of patients fail to respond to therapy. This demonstrates the need for techniques capable of providing personalized feedback about treatment response at the earliest stages of therapy to identify patients likely to benefit from changing treatment. Diffuse optical spectroscopic imaging (DOSI) has emerged as a promising functional imaging technique for NAC monitoring. DOSI uses non-ionizing near-infrared light to provide non-invasive measures of absolute concentrations of tissue chromophores such as oxyhemoglobin. In 2011, we reported a new DOSI prognostic marker, oxyhemoglobin flare a transient increase in oxyhemoglobin capable of discriminating NAC responders within the first day of treatment. In this follow-up study, DOSI was used to confirm the presence of the flare as well as to investigate whether DOSI markers= 0.0010) between patients receiving MTD and MET regimens. CONCLUSIONS DOSI optical biomarkers are differentially sensitive to MTD and MET regimens at early timepoints suggesting the specific treatment regimen should be considered in future DOSI studies. Additionally, DOSI may help to identify regimen-specific responses in a more personalized manner, potentially providing critical feedback necessary to implement adaptive changes to the treatment strategy.BACKGROUND Malignant eccrine spiradenoma is one of the rarest sweat-gland tumors. Here, we describe a rare case of low grade malignant eccrine spiradenoma located at the vulva. CASE PRESENTATION The vulvar lesion was described as a mass measured 3.5 cm and located in the dermis and subcutis with no attachment to the epidermis. The neoplasm was arranged in ragged sheets or solid nodules sometimes with focal necrosis. The tumor cells had hyperchromatism, pleomorphism, and prominent nucleoli with high mitotic index and KI-67 estimated at 70-80%. CONCLUSIONS It’s only the fifth case of malignant eccrine spiradenoma localized at the vulva. This is the first time that an HPV genotyping was made in this type of lesion with no HPV found while the p16 expression was diffuse. Moreover, it’s the first time that a p53 mutation is detected by sequencing in this location.OBJECTIVES Microvesicles (MVs) derived from human Wharton’s jelly mesenchymal stem cells (MSC-MVs) were demonstrated to ameliorate acute lung injury (ALI). We have previously found that MSC-MV-transferred hepatocyte growth factor was partly involved in their therapeutic effects. Since MSC-MVs also contained a substantial quantity of miR-100, which plays an important role in lung cancer and injury, we speculated that miR-100 might similarly account for a part of the therapeutic effects of MSC-MVs. METHODS MSCs were transfected with miR-100 inhibitor to downregulate miR-100 in MSC-MVs. A rat model of ALI and cell injury in rat type II alveolar epithelial cell line (L2) was induced by bleomycin (BLM). A co-culture model of alveolar epithelial cells and MSC-MVs was utilized to examine the therapeutic role of MSC-MVs and mechanism. RESULTS MSC-MV treatment attenuated BLM-induced apoptosis and inflammation in BLM-treated L2 cells and ameliorated BLM-induced lung apoptosis, inflammation, and fibrosis in BLM-induced ALI rats. The beneficial effect of MSC-MVs was partly eliminated when miR-100 was knocked down in MSCs. Moreover, MSC-MV-transferred miR-100 mediated the therapeutic effect of MSC-MVs in ALI through enhancing autophagy by targeting mTOR. CONCLUSION MSC-MVs enhance autophagy and ameliorate ALI partially via delivery of miR-100.That certain cell types in the central nervous system are more likely to undergo neurodegeneration in Parkinson’s disease is a widely appreciated but poorly understood phenomenon. Many vulnerable subpopulations, including dopamine neurons in the substantia nigra pars compacta, have a shared phenotype of large, widely distributed axonal networks, dense synaptic connections, and high basal levels of neural activity. These features come at substantial bioenergetic cost, suggesting that these neurons experience a high degree of mitochondrial stress. In such a context, mechanisms of mitochondrial quality control play an especially important role in maintaining neuronal survival. In this review, we focus on understanding the unique challenges faced by the mitochondria in neurons vulnerable to neurodegeneration in Parkinson’s and summarize evidence that mitochondrial dysfunction contributes to disease pathogenesis and to cell death in these subpopulations. We then review mechanisms of mitochondrial quality control mediated by activation of PINK1 and Parkin, two genes that carry mutations associated with autosomal recessive Parkinson’s disease. We conclude by pinpointing critical gaps in our knowledge of PINK1 and Parkin function, and propose that understanding the connection between the mechanisms of sporadic Parkinson’s and defects in mitochondrial quality control will lead us to greater insights into the question of selective vulnerability.BACKGROUND To the best of our knowledgedd, there is currently no case in the literature reporting the comorbidity of Wilson’s and Creutzfeldt-Jakob disease (CJD), linked through copper. CASE PRESENTATION A 44-year-old male with a history of inherited Wilson’s disease (hepatolenticular degeneration), which manifested as mild liver injury and psychiatric symptoms, was admitted to our department due to speech and cognitive disturbances. Upon his admission, he had motor aphasia as well as psychomotor retardation with an otherwise normal neurological examination. Laboratory tests, including liver enzymes, copper and serum ammonia were all within normal range. The brain MRI showed increased T2 signal in the caudate nuclei, attributed to copper deposition in the context of Wilson’s disease. In the electroencephalogram, periodic sharp discharges were eminent, initially unilateral and then generalized. The positive 14-3-3 protein in the cerebrospinal fluid (CSF) and the new brain MRI, that demonstrated elevated DWI signal not only in the basal ganglia but also in parts of the cerebral cortex (cortical ribbon sign), all supportive of a possible CJD diagnosis. The detection of PrPSc in the patient’s CSF, using the RT-QuIC method, which has a 99.4-100% specificity for CJD, made the diagnosis of CJD highly probable. CONCLUSION This is the first report of Wilson’s and Creutzfeldt-Jakob diseases co-morbidity in the literature, which could evoke a possible role of copper in the pathogenesis of CJD.BACKGROUND There are a variety of bioinformatic pipelines and downstream analysis methods for analyzing 16S rRNA marker-gene surveys. However, appropriate assessment datasets and metrics are needed as there is limited guidance to decide between available analysis methods. Mixtures of environmental samples are useful for assessing analysis methods as one can evaluate methods based on calculated expected values using unmixed sample measurements and the mixture design. Previous studies have used mixtures of environmental samples to assess other sequencing methods such as RNAseq. But no studies have used mixtures of environmental to assess 16S rRNA sequencing. RESULTS We developed a framework for assessing 16S rRNA sequencing analysis methods which utilizes a novel two-sample titration mixture dataset and metrics to evaluate qualitative and quantitative characteristics of count tables. Our qualitative assessment evaluates feature presence/absence exploiting features only present in unmixed samples or titrations bexpected values for all three pipelines. CONCLUSIONS We developed a novel framework for assessing 16S rRNA marker-gene survey methods and demonstrated the framework by evaluating count tables generated with three bioinformatic pipelines. This framework is a valuable community resource for assessing 16S rRNA marker-gene survey bioinformatic methods and will help scientists identify appropriate analysis methods for their marker-gene surveys.OBJECTIVE This study uses health and non-health sector data sources to select and assess available indicators for service provision along the continuum of care for maternal health at subnational levels in South Africa. It applies the adequacy approach established in another study to assess the multi-dimensionality of available indicators. Using adequacy and the process of assessment in the study, the comprehensiveness of the continuum of care for improving maternal health outcomes can be assessed. RESULTS We found 27 indicators of care utilization and access, linkages of care, and quality of care from the routine district health information system. The General Household Survey contained 11 indicators for the social determinants of health on the continuum of care framework. Indicator gaps include health promotion during and after pregnancy, maternal nutrition, empowerment and quality of care. At present, the available indicators measure about 74% of the interventions on the continuum of care framework. We make recommendations regarding improvements needed to better measure and monitor the continuum of care for maternal health. These involve actions within the health system and include integration of non-health system indicators.BACKGROUND The functional autonomy assessment is essential to manage patients with a neurodegenerative disease, but its evaluation is not always possible during a consultation. To optimize ambulatory autonomy assessment, we compared the Lawton Instrumental Activities of Daily Living (IADL) questionnaire collected by telephone and face-to-face interviews. METHODS A randomized, crossover study was carried out among patients attending a memory clinic (MC). The IADL questionnaire was collected for patients during telephone and face-to-face interviews between nurses and patients’ caregivers. The agreement between the two methods was measured using the proportion of participants giving the same response, Cohen’s kappa, intraclass correlation (ICC) coefficient, and Bland and Altman method. The associations between patients’ characteristics, events occurring between the two assessments, and agreement were assessed. RESULTS Among the 292 patients (means ± SD age 81.5 ± 7, MMSE 19.6 ± 6, 39.7% with major neurocognitive disorders) analyzed, the proportion of agreement between the two modes was 89.4% for the total IADL score. Weighted kappa coefficient was 0.66 and ICC score was 0.91 for total IADL score. The mean difference between the IADL score by telephone or face-to-face was 0.32. Overall, 96.9% of measures lay within the 95% limits of agreement. The occurrence of fall was less likely associated with the probability to lie within the 95% limits of agreement (OR = 0.07 [0.02-0.27]). CONCLUSION The administration of IADL by telephone with the caregiver appears to be an acceptable method of assessment for MC patients compared to face-to-face interview. The events such as falls which could occur in a time close to the evaluation should be reported. STUDY REGISTRATION ClinicalTrials.gov, NCT02654574. Retrospectively registered 13 January 2016.BACKGROUND The survival rates of patients with metastatic osteosarcoma are poor, and the prognosis is closely related to the choice of treatment, especially surgery. This study aimed to evaluate the survival outcomes of patients with metastatic osteosarcoma undergoing regional dissections. METHODS We collected data on patients with metastatic osteosarcoma between 2004 and 2014 from the Surveillance, Epidemiology, and End Results (SEER) database. Kaplan-Meier curves were used to compare overall survival (OS) and cancer-specific survival (CSS), while univariate and multivariate Cox regression analyses were used to evaluate outcomes. Propensity score matching (PSM) was used to minimize the effects of confounding factors. RESULTS The SEER database had records of 2768 patients diagnosed with osteosarcoma, of whom 398 were included in our study. Of the included patients, 116 (29.15%) underwent regional dissections, while 282 (70.85%) underwent non-regional dissections. The univariate and multivariate Cox regression in patients with metastatic osteosarcoma.The mechanisms of transmission of influenza A virus (IAV) and porcine reproductive and respiratory syndrome virus (PRRSV) in pigs during the pre-weaning period are not fully elucidated. Since viable IAV and PRRSV can be found on the udder skin of lactating sows and the use of nurse sows is a common management practice, we developed a novel nurse sow model to evaluate the transmission of IAV and PRRSV from lactating sows to their adopted piglets. In two studies, we infected pigs with either IAV or PRRSV who then contaminated the udder skin of lactating dams with their nasal and oral secretions while suckling. Once the skin was confirmed virus positive for IAV and PRRSV, the sows were moved to separate empty clean rooms to adopt IAV and PRRSV negative suckling piglets. After adoption, 1 out of eight (12.5%) piglets tested IAV positive 1-day post-adoption (dpa) and the entire litter (8 out of 8) became positive by 4 dpa. In the case of PRRSV, 3 out of 11 (27.3%) pigs tested rRT-PCR positive 2 dpa and there were 7 out of 11 (63.6%) pigs positive at the termination of the study at 7 dpa. This study documented the transmission of IAV and PRRSV between litters of piglets by nurse sows and highlights the importance of the nurse sow-piglet as a unit that contributes to the maintenance of endemic infections in breeding herds. The use of nurse sows in pig farms, though beneficial for minimizing pre-weaning mortality and maximizing farm productivity, is seemingly detrimental as this practice may facilitate the transmission of IAV and PRRSV to piglets prior to weaning.OBJECTIVE Transcriptome analysis of human whole blood is used to discover biomarkers of diseases and to assess phenotypic traits. Here we have collected small volumes of blood in Tempus solution and tested whether different storage conditions have an impact on transcriptomic profiling. Fifty µl of blood were collected in 100µl of Tempus solutions, freezed at - 20 °C for 1 day and eventually thawed, stored and processed under five different conditions (i) - 20 °C for 1 week; (ii) +4 °C for 1 week; (iii) room temperature for 1 week; (iv) room temperature for 1 day, - 20 °C for 1 day, room temperature until testing at day 7, (v) - 20 °C for 1 week, RNA was isolated and stored in GenTegra solution. We used 272 immune transcript specific assays to test the expression profiling using qPCR based Fluidigm BioMark HD dynamic array. RESULTS RNA yield ranged between 0.17 and 1.39µg. Except for one sample, RIN values were > 7. Using Principal Component Analysis, we saw that the storage conditions did not drive sample distribution. The condition that showed larger variability was the RT-FR-RT (room temperature-freezing-room temperature), suggesting that freezing-thawing cycles may have a worse effect on data reproducibility than keeping the samples at room temperature.BACKGROUND The ability of mesenchymal stem cells (MSCs) to modulate immune responses inspired a series of clinical trials addressing oral mucosal inflammation. We previously reported on the safety and efficacy of fresh, allogeneic and autologous, adipose-derived mesenchymal stem cells (ASCs) to treat feline gingivostomatitis (FCGS), an oral mucosal inflammatory disease that shares similarities with human oral lichen planus. METHODS To meet clinical demand and goals for future commercialization, we determined the feasibility of shipping fresh ASCs to distant clinics and extended our pilot studies to expand safety and efficacy data for shipped and non-shipped ASCs in a cohort of 18 FCGS cats enrolled locally and at a few different locations within the USA. RESULTS We found that ASCs retained their viability, phenotype, and function after shipment. ASCs administered systemically resulted in a 72% positive response rate, identical to that noted in our previous studies. Cats that responded to ASC therapy had a significant decrease in circulating globulin concentration and histological evidence of decreased CD3+ T cells and CD20+ B cells in the oral mucosa. Responder cats also had significantly decreased percentages of CD8lo cells in blood prior to and at 3 months post-ASC therapy. CD8lo cells may serve as a potential „predictor” for response to systemic ASC therapy. CONCLUSION Fresh feline ASCs can be successfully shipped and administered to cats with FCGS. ASCs modulate the immune response and demonstrate efficacy for chronic oral mucosal inflammatory lesions that are characterized by CD8+ T cell inflammation and T cell activation. FCGS is a potentially useful naturally occurring large animal model of human oral inflammatory diseases.BACKGROUND AND PURPOSE We evaluated the relationship between patient-, tumor-, and treatment-related features and radiation-induced lymphopenia (RIL) and evaluated the correlation between RIL and survival outcome in NPC patients to help improve the treatment strategy. METHODS This retrospective study included 374 patients with stage II-IVa NPC who had been treated with definitive RT and were enrolled from 2004 to 2015; The associations between the G3-4 RIL (absolute lymphocyte count, ALC less then 0.5 × 109 cells/L) during RT and patient-, tumor-, and treatment-related factors were assessed using Cox regression analyses. The correlation between ALC nadir and survival was examined using a Kaplan-Meier analysis, compared with the log-rank test, and confirmed by a Cox proportional hazards analysis. RESULTS In the multivariate analysis, lower baseline ALC and intensity modulated radiation therapy (IMRT) (vs. 2 dimensional-conformal radiation therapy,2D-CRT) were identified as 2 independent factors that were associated with G3-4 RIL. In the multivariate survival analysis, patients with G3-4 ALC nadir had longer local recurrence-free survival durations (LRFS) (vs. G0-2 nadir, HR = 0.548, P = 0.005) and longer progression-free survival durations (PFS) (vs. G0-2 nadir, HR = 0.676, P = 0.022), while patients with G4 ALC nadir had a shorter distant-metastasis-free survival duration (DMFS) (vs. G0-2 nadir, hazard ratio [HR] = 2.567, P = 0.037). CONCLUSIONS In the study, lymphopenia during RT were affected by baseline ALC and RT modality independently. Moreover, G3-4 ALC nadir was independently linked with longer PFS and LRFS durations, while G4 ALC nadir was independently linked with a shorter DMFS duration.Distinct from classical tumor angiogenesis, vasculogenic mimicry (VM) provides a blood supply for tumor cells independent of endothelial cells. VM has two distinct types, namely tubular type and patterned matrix type. VM is associated with high tumor grade, tumor progression, invasion, metastasis, and poor prognosis in patients with malignant tumors. Herein, we discuss the recent studies on the role of VM in tumor progression and the diverse mechanisms and signaling pathways that regulate VM in tumors. Furthermore, we also summarize the latest findings of non-coding RNAs, such as lncRNAs and miRNAs in VM formation. In addition, we review application of molecular imaging technologies in detection of VM in malignant tumors. Increasing evidence suggests that VM is significantly associated with poor overall survival in patients with malignant tumors and could be a potential therapeutic target.